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Abstract—In this paper, we introduce a new image database,
consisting of examples of artists’ work. Successful classification
of this database suggests the capacity to automatically recognize
an artist’s aesthetic style. We utilize the notion of Transform-
based Evolvable Features as a means of evolving features on
the space, these features are then evaluated through a standard
classifier. We obtain recognition rates for our six artistic styles
— relative to images by the other artists and images randomly
downloaded from a search engine — of a mean true positive
rate of 0.946 and a mean false positive rate of 0.017. Distance
metrics designed to indicate the similarity between an arbitrary
greyscale image and one of the artistic styles are created from
the evolved features. These metrics are capable of ranking
control images so that artist-drawn instances appear at the
front of the list. We provide evidence that other images ranked
as similar by the metric correspond to naı̈ve human notions of
similarity as well, suggesting the distance metric could serve as
a content-based aesthetic recommender.

I. INTRODUCTION

In this paper we use evolutionary computation to discover

a useful collection of features for the description of individual

artists’ styles. We first introduce a novel and public database

of images: the samples are panels from practising artists in

the genre of comics and graphic novels, and thus are a non-

representational sample of each artist’s work. Our work’s

success is evaluated by two means: correctly classifying

images by originating artist; and contrasting the performance

of a generated distance metric to our naı̈ve expectations of

the properties of similar styles.

Our approach can be summarized as follows: Firstly, we

define a collection of features well-suited to distinguishing

artists’ styles using an evolutionary feature creator (EFC).

This technique uses genetic programming (GP) to create

pixel-level functions which define transforms on the space of

grayscale images, transforms ideally useful for characterizing

important sub-patterns of an image; Next, we define a feature

space and distance metric based on this discovered collec-

tion of features; Finally, we explore that distance metric’s

behaviour on a control set of images.

There are two obvious applications of this technology.

Such a classifier or distance metric could be used to troll the

web in search of examples of an artist’s work. This might

serve as a means of detecting copyright infringement; The

use of low-level pixel-based features here suggests that even

partial sections of work might be recognized if pieces have

been incorporated into larger wholes.
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Secondly, and more interestingly, a successful distance

metric would return not only instances of an artist’s work, but

also instances of work by artists with a similar style. Such

a ranking metric might appeal to users more interested in

purely aesthetic characteristics, rather than the more semantic

results returned by association or keyword matching. There

is need for this sort of measure: For instance, Adomavicius

and Tuzhilin note that in the design of recommender en-

gines — systems which suggest database entities to users

based on some evidence of likely utility — current content-

based techniques are limited by the typically sparse features

available [1]. Or, consider the case of content-based image

retrieval, where images are suggested based on how closely

they correspond to previously selected images, as measured

by (some approximation of) the human visual system. Datta

et al. point out that here too appropriate features are often

unknown, and that automated feature extraction methods are

difficult to apply to multimedia data. Further, that in some

cases visual similarity might be more critical than semantic

similarity [5].

Finally, this work shows that evolutionary feature creation

can be extended successfully to another field of image

recognition, demonstrating the breadth of the approach.

II. REVIEW

Since image spaces tend to involve very large numbers

of dimensions, there is need for intelligent means of di-

mensionality reduction. Feature extraction, the mapping of

images to numeric description vectors, is an important field in

computer vision. Linear techniques can be shown to approach

optimality by a measure of inter- and intra-class spread,

but sometimes make inefficient assumptions regarding the

distribution of data and the form of solution; As a result,

there is much work in the nonlinear generation of features

[4], [16].

The complexity of the tasks involved make evolutionary

computation a natural means of approaching the problem.

Early evolutionary techniques utilized LISP-style programs

to control a roving agent [3], [10]. More recent techniques

tend towards the use of a collection of low-level descriptions

of image features evaluated via a GP-derived mathematical

expression [7], [15], or as a composition of image processing

filters [14]. To varying levels, the assumption that the data

sources can be well represented by a small number of low-

level features, rather than by the larger raw pixel-space

in which images are defined, makes use of GP in image

classification similar to the more general feature construction



found in a broader spectrum of machine learning tasks [11],

[12].

Transform-based Evolvable Features (TEFs) were first

introduced in [9], and further developed in [8]. TEFs operate

on the raw-pixel space, and use GP to define transforms

on the space of greyscale images. These transforms, ideally,

serve to highlight important characteristics of the database

at hand. The explicit purpose of a TEF-based evolutionary

feature extraction system is to automatically define features

for a given image database when the relevant patterns are

complex or unknown. To date, TEF-based approaches have

achieved state-of-the-art classification accuracies in an object

recognition database and a database of medical cell images

indicating a form of muscular dystrophy [8].

There have been several attempts to use automated tech-

niques to describe or classify artistic styles (we do not

here consider artist authentication, since this work tends to

have differing goals and utilizes non-image sources, such as

surface texture and x-ray scans). All have relied on the use of

pre-defined image features, using some classifier to predict

either individual artist or broader artistic genre or both, where

images have been mined from databases of “great” artists.

The most complete comparisons are by Zujovik et al. [17]

and by Shen [13], who both considered collections of existing

and novel features evaluating a collection of paintings by

famous artists. Shen achieves a recognition accuracy of

approximately 0.69. Zujovik et al. achieved recognition rates

of approximately 0.68 on binary genre classification; Further,

their recreation of previous features showed, in some cases,

far inferior results to the original reported success rates,

suggesting great variance due to data source. Standardized

sources are obviously of merit here.

We see several potential issues with the above approaches

which our current work sidesteps:

• the great artists have been selected by art theorists

or historians for their own purposes. This introduces

several potential biases which may have consequences

for classifiability, not the least of which is the possibility

that the “greats” have been selected precisely due to

their uniqueness, or their divergence from previous art

practice. The artists in the database we employ (CAPD,

See Section III) were chosen in a randomized (but

non-representative1) fashion; Each is a contemporary

commercial artist working in a single popular genre. As

a result, this database seems more likely to mimic the

difficulties in the classification of an individual artist’s

style as it would occur in many practical scenarios.

• we introduce a control group, one based on results from

a search engine, which can be considered an unbiased

source in terms of the classifiability of the samples;

• we do not rely on pre-defined features, allowing the

particularities of sample distinction to emerge from the

artistic practice, rather than being framed in previous

expectation.

1Indeed, retrospectively we see that the majority of artists are Canadian,
an obvious bias from the collector.

III. A DATABASE OF ARTISTS’ WORK

Our Comic and Graphic Novel Artist Panel Database

(CAPD; freely available at http://kowaliw.ca/capd) is a col-

lection of grayscale panel drawings organized by artist, and

a control group. The images do not depict any consistent

object, character, nor anything else representational; Instead,

they are examples of an artist’s aesthetic style (for the

duration of the project included in the source material, at

least). All are examples of the comic and graphic novels

genre, implying grayscale images containing highly stylized

caricatures.

The CAPD consists of seven classes of image, hereafter

labelled C = {A&B, BNS, Cats, Flower, Love, Other,

Words}, where Other is the control group. Examples of

each class are shown in Figure 1. The control group was

generated by randomly selecting a subset of images returned

by a search engine when queried for black-and-white line

drawings corresponding to the keywords “comic graphic

novel”. There are an additional twenty constructed images

in the control group, designed to represent extreme points in

image space (e.g. all white, simple gradients, noise, etc.).

There are 150 training images and at least 80 validation

images for each class, with 240 validation images in the

control group. Each image is 8-bit greyscale of size 200×200
pixels or less.

We define the fitness of some given classifier, σ, on a

set of images from our database, S, to be

fitness(σ, S) =
∏

c∈C

(1 − FPR(σ, S, c)) (1)

where FPR is the achieved false positive rate. When com-

puting fitness for training sets of images, we utilize a

50/50 train-test split; For evaluating validation sets of images,

we use 10-fold cross-validation. For each run we utilized

40 randomly selected images per class for training and 80

images per class for final validation. Note that fitness is

stochastic due to the randomized ordering and folding of

presentation of images. We should also point out that fitness

is a more difficult measure than is required for application:

firstly, it demands the creation of a multi-classifier, whereas a

binary classifier should be sufficient for any particular usage;

secondly, it demands correct classification of the Other class,

which is likely unnecessary. Regardless, optimization of

fitness should lead to good values of many other interesting

success measures.

IV. TRANSFORM-BASED EVOLVABLE FEATURES

Here we provide an overview of TEF-based feature extrac-

tion; The interested reader may consult [8] for details. Our

overall system is an evolutionary feature creator (EFC), a

system which evolves individuals which define a collection

of features for a provided image database. The goal of an

individual in the EFC is to transform the images to a numeric

vector suitable for classification.

An individual is composed of a collection of TEFs, or

individual transforms on the space of grayscale images.



Fig. 1. Examples of artists’ work. From left to right, top to bottom: S. Notley’s Flower (http://www.angryflower.com); R. Perez & R. Coughler’s BNS
(http://www.butternutsquash.net); B. Rivers’ Words (http://benjaminrivers.com/emptywords); S. Ramsoomair’s Cats (http://www.vgcats.com); E. Kim’s
Love (http://www.inkskratch.com); J. Burgess’ A&B (http://www.jimburgessdesign.com). All drawn images, here and throughout the paper, used with
permission and c© the originating artists. B. Rivers’ work is protected under the creative commons.
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Fig. 2. Overview of the TEF-based approach to evolutionary feature
extraction.
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These TEFs are GP graphs defined on the space of pixel

neighbourhoods, which, when applied as a sliding window

over the image, return a transformed image. The transformed

image is then converted to a set of numeric values via some

moment functions, and utilized in the individual’s resulting

feature vector. In this case, we use a single moment, the nor-

malized 0, 0-th geometric moment, M00 = 1

|I|

∑

p∈I f(p).
Each individual is evaluated by training a 1-NN classifier

and computing the individual’s fitness. The use of a classifier

during fitness evaluation sometimes leads to features which

do not generalize to other classifiers; However, use of the

classifier also effectively eliminates assumptions regarding

the distribution of data points following transform, allowing

us to use a wide space of potential transforms.

An overview is shown in Figure 2.

V. EXPERIMENTS IN THE RECOGNITION OF ARTISTS’

STYLES

As in previous work, an evolutionary algorithm was used

to find individuals maximizing fitness. After an informal

parameter search consisting of approximately 25 runs with

randomly selected parameter values, we settled on a pa-

rameter set believed to be ideal for the problem at hand.

We use a population size of 30 (doubled in the initial

generation); selection via a tournament of size 3; a graph

size of 250; a maximum number of transforms of size 25,

and maximum initialization number of transforms of 5; a

variable-size neighbourhood of type VN with a maximum

size of 36 (see Figure 3); and probabilities of crossover,

mutation, merger, and pruning of 0.33, 0.02, 0.02, and 0.2.

The pruning probability was purposefully set higher than

that dictated by mere selection for accuracy in an attempt to

generate parsimonious solutions. Ten runs were conducted

with the above parameters, achieving a mean validation

fitness of 0.843 (s.d. 0.04).

A. The Critic, and the Definition of Feature Space

The best individual from the best run was extracted, and

will hereafter be termed the critic, since it is through this

individual’s features that future images will be evaluated. The

critic attained a validation fitness of 0.868. The accuracies for

each class, in the binary problem consisting of distinguishing

between a particular artist from the remaining artists and



the Other class, are shown in Table I, attaining a mean

true positive rate of 0.946 and a mean false positive rate of

0.017 for each class, when evaluated as a binary classification

problem. It should be pointed out that these features were

chosen to optimize a multi-classifier, and it is possible that

features evolved specifically to maximize the recognition of

some artist’s work in a binary classifier might achieve better

results. Generally speaking, the 1-NN classifier does best at

maximizing the true positive rate, unsurprising since this was

the classifier used during the evolution of the features. Other

classifiers, however, also do reasonably well on this feature

set.

The critic utilizes a total of sixteen transforms, defined on a

neighbourhood of type VN-15. The value of these transforms

as features, as determined by Information Gain Ranking (on

the multi-classifier), ranges from 0.97 to 0.21, where three

features are excluded as completely non-discerning. These

transforms — excluding three non-discerning transforms,

with intra-transform redundancy removed, and in order of

information gain — are:

T0 = min
{

thresh
(

ii2
3

, i2 min{i0, i10}
)

,

min{i6, i13} + thresh(max{i2, i14},max{i2, i10})}

T1 = thresh



i7 + (i10 − i12),

√

(

i9

i14

)i0





T2 =
i4 −

(

i7 + i1
i8

)

−193.76

T3 =
(i7 + i11)

i5

244.82

T4 =

√

i11

i3

T5 = min{i9, i14}

T6 = (i7)
i2 · (i10)

max{i0,i9,i11}

T7 = i0i6 − min{i10, i13}

T8 = thresh

(

(i9)
i8 ,

i10

(−144.43)i6

)

T9 = min

{

i1 + thresh(min{i3, i14}, i10),
145.04

i14

}

T10 = i5i7 − (i2 + i14)

T11 = thresh

(

min{min{i14, (i13 − i8)}, i9}

i4
, i8

)

· thresh
(

thresh(i1, i9), (i13)
i7

)

T12 = thresh (thresh(i8, i6), thresh(i3,min{i0, i1}))

The action of some of these transforms on sample images

is shown in Table II. We will write these 13 features as

Φ(f(I)) = (M00(T0((f(I))), ..., M00(T12((f(I)))). Hence,
Φ(f(I)) refers to the location of an arbitrary grayscale image

in the feature space defined by the critic, hereafter called

simply the feature space. Below we outline some of these

features and the characteristics they highlight.

The transform T1 causes a sharp change in output when the

central pixel is close to zero, and hence can distinguish be-

Other

Words

Love

Flower

Cats

BNS

A&B

Fig. 4. Spread of values by the T1 feature.

tween pure white and near white. Light greys are highlighted,

while pure whites are left dark (note the difference between

action on images in the Love as opposed to the Flower

class). The classes BNS and Cats, using the most detailed

backgrounds, are sent almost entirely to white. Again, Love

is distinguished due to the use of fine cross-hatching, which

is acted upon differently than both flat grey and less regular

photographic backgrounds (see Figure 4). This feature also

has a tendency to highlight artifacts of JPEG compression.

The transform T2 is a very sensitive detector for horizontal

changes. It is activated when i1
i8

≈ 193, meaning that a pixel

on the right of the neighbourhood must be very close to

black, and a pixel on the left must be fairly bright. This

feature is fairly adept at distinguishing both Flowers and

Words from most other images, as these two classes tend to

contain thick black lines cutting across flat light backgrounds.

Transforms T2 and T4 are similar, both using division

to detect changes in the horizontal and vertical directions,

respectively. Transform T2 is more specific, using division

by a constant to select for a narrow band of values. This

narrow range excludes, for instance, black text on a white

background. This narrow range is especially adept at distin-

guishing the Words category, which has a large number of

dark-grey to black transitions.

Like transform T2, transform T3 also uses a constant to

select a narrow range of values. Pixel values are converted

to one of only three possible output values, loosely corre-

sponding to light, mid, and dark ranges, save that unvaried

black is mapped to a lighter colour. Hence, T2 seems capable

of measuring the overall darkness of an image discounting

unvaried fields of pure black, possibly able to identify the

parts of an image that indicate the mood of the panel (dark

greys) as opposed to structural elements (written text, boxes,

strokes).

This same strategy seems to be recovered by transform

T6, which also maps fields of pure black to white, but then

also blurs the remaining image (through the maximum of

the central, right-most and bottom-most pixel intensities), a

further measure to discount sharp, dark edges.

The transform T10 detects bright values along the diagonal,

dominated by a preference for pure darkness along the verti-

cal axis. We believe this combination rarely occurs with line

drawing, and is instead more common with natural textures

(e.g. from photographic sources). Hence, T10 serves as a

means of detecting the photographic elements found in the

Cats class. Like transform T1, this transform also highlights

pure white as opposed to near-white; Hence, comparison

of this feature alongside T1 will yield the overall darkness



TABLE I

THE BINARY CLASSIFICATION SUCCESS RATES ON THE VALIDATION IMAGES (560 INSTANCES) BY CLASS.

A&B BNS Cats Flower Love Words mean best
classifier TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

1-NN 0.950 0.029 0.925 0.033 0.975 0.008 0.913 0.023 0.850 0.023 0.988 0.010

0.946 0.017
Naı̈ve Bayes 0.950 0.009 0.863 0.060 0.963 0.071 0.925 0.046 0.913 0.210 0.925 0.033

Decision Tree 0.813 0.031 0.825 0.025 0.925 0.006 0.825 0.027 0.700 0.042 0.938 0.013
Log. Regression 0.863 0.029 0.850 0.025 0.925 0.017 0.888 0.017 0.713 0.033 0.963 0.010

TABLE II

ACTION OF A SELECTION OF THE CRITIC’S TRANSFORMS ON SAMPLE IMAGES FROM THE CAPD. TRANSFORMS T2 AND T3 HAVE BEEN SUBJECTED

TO CONTRAST STRETCHING TO MAKE FEATURE VALUES MORE VISIBLE.

T A&B BNS Cats Flower Love Words

Id

T1

T2

T3

T4

T6

T8



5. Spread of val-
ues of Cats versus
all other classes.

of the image, spread by the source (photographic, flat, or

cross-hatched) of that darkness. The spread of values, in

conjunction with transform T1, is shown in Figure 5.

There are several features which behave like edge-

detectors, especially transform T4. Unsurprisingly, these

edge-detectors tend to favour the horizontal axis, as to be

expected with images containing western text. Most of the

edge-detectors are highly specialized and incorporated into

larger features, and hence do not behave like typical edge-

detectors, such as the Sobel or Laplacian filters. Other trans-

forms detect cross-hatching and text features. The existence

of a JPEG artifact-detecting transform is worrisome, since it

suggests that non-aesthetic data source information might be

influencing the recognition accuracy. In the next section, we

will provide evidence that this concern can be overlooked.

VI. ESTIMATING THE DISTANCE BETWEEN AN

ARBITRARY IMAGE AND AN ARTIST’S STYLE

In this section we attempt to create a distance metric

between an arbitrary image and an artist’s style. We will do

so by: (a) mapping the provided image into the previously

discovered feature space; and (b) computing an estimate

of the probability that the feature values obtained indicate

membership in the class associated with that artist from the

CAPD data instances.

We originally attempted to use a robust, non-parametric

distance metric (specifically Mahalanobis distance) to define

the distance between points in space. However, based on our

informal visual estimation, simple Euclidean distance was a

better measure of human-intuitive similarity; Indeed, the clas-

sifier used to evaluate the evolving features used Euclidean

distance as a similarity metric [2], meaning that an appropri-

ate weighting of features is likely implicitly inserted in the

feature definitions themselves by the evolutionary algorithm.

Hence, we define the distance between two images, x and y

as d(x, y) =
√

∑

0≤i≤12
(M00(Ti(xi)) − M00(Ti(yi)))2.

Next, we attempt to estimate the probability that a given

image is in some particular class. Given the relatively large

number of dimensions in our space, it is likely impossible

to demarcate any reasonably sized region and compute the

frequency of samples within that region, without obtaining

zero nearly everywhere: this is the familiar “curse of dimen-

sionality” that plagues machine learning. Instead, we will

use the distance between the current point and the closest

training points in the CAPD (since we know from recognition

experiments that distance measures can be meaningful on this

space). Since we wish to avoid undue influence of outliers,

we will use several nearest neighbours in the calculation.

Let us choose a particular class c from the classes repre-

sented in the CAPD, where {ci} are the associated training

instances. Then, given some new point p, we will choose

three points from c minimizing d(ci, p), and refer to these

points as 3-NN(p, c). Finally, we will define the “class-ness”
or c-ness of p to be

c-ness(p) = max{d(ci, p)|ci ∈ 3-NN(p, c)} (2)

The c-ness measure will be large any time there are not at

least three instances from the training set nearby; It will

be small when there are many instances nearby (ideally

excluding influence by outliers). Hence, we expect that c-

ness is strongly inversely correlated with the desired prob-

ability measure, and hence, that we can use c-ness as an

approximation.

A. Experiments with c-ness

240 search engine-derived Other validation images were

used for experimentation with the c-ness measure. For each

class, a collection of 20 images from the associated artist’s

validation set were selected randomly and were added to

the Other images. These images were ranked, and examined

for two properties: Firstly, two measures corresponding to

the capacity of the c-ness measure to choose samples of an

artist’s work from a random collection of images. Secondly,

we considered the top unrelated images returned by the

ranking for similarity to the artist’s style, a notion alas far

less easily measured.
Firstly, we computed the relative c-ness for each of the 260

validation images. The number of true artist-drawn images
returned within the top 20, and the median ranks are:

no. in median rank
class top 20 (of 260)

A&B 19 9.5
BNS 17 10.5
Cats 16 10.0

Flower 14 12.0
Love 13 10.5

Words 15 12.5
mean 15.7 10.8

These results suggest that the distance metric preserves the

efficacy of the recognition process, allowing for a ranking

procedure to place true artist-drawn instances at the front of

the list.

We now turn to a discussion of the capacity of c-ness

to perform as a similarity metric across several artists’ work.

This claim contains both a social and a subjective component,

and is thus difficult to evaluate. We will, however, present

some evidence that might convince the reader of the value

of the measure.

Using c-ness, we can compute the mean distance between

classes, along with the closest images. For instance, we may

write that the BNS-ness of Flower is the mean distance

between an image from the Flower class to the set BNS. Ta-

ble III shows the mean distance between the CAPD classes.



From this data, we can conclude that A&B is most similar

to Love, and vica versa. This corresponds to expectations,

since both use light colours, thin sharp edges, and large

fields of white or grey. BNS is most similar to Cats, and

vica versa; also roughly in line with expectations, since both

use highly detailed and photographic backgrounds, and thin,

sharp edges. Words is somewhat similar to both BNS and

Cats, likely due to the usage of darker colours and large

fields of black and dark grey.

Surprisingly, the two styles which make prodigious use

of thick, black lines, Flower and Words, are not particularly

similar to each other. Note that the feature T2 tends to return

nearly black images, making the relative weighting of the

measure small under Euclidean distance (and, consequently,

1-NN classification). Hence, the distance metric here states

that feature T2 is significant enough to measure, but less sig-

nificant than other features. Indeed, Flower is not particularly

similar — according to c-ness — to any of the other classes.

Within the validation images retrieved from the search

engine there existed, by chance, an image by R. Coughler,

one of the artists of BNS. While the subject matter was

similar to the CAPD source materials, the image itself was

a scanned sketch, and hence likely created via differing

technique than the series. By BNS-ness, this image ranked

28th. Given that eighteen of the preceding images came from

the BNS class, we can consider this image as ranking 10th

of 240 randomly-selected images.

We also note that the majority of images ranked within

the top twenty, in terms of Love-ness, were self-described

examples of the Manga style; This was not true of any other

style. We note that Kim’s Love as a Foreign Language,

a story involving a foreigner’s experiences in Korea, is

advertised as a Manga.

Finally, we note that although none of the CAPD artists

registered as particularly close to Flower, there did exist an

artist — J. Brown (http://jeffreybrowncomics.blogspot.com)

— in the Other class who returned three images within

the top twenty-five lowest according to Flower-ness. The

artist’s style (see Figure 6), at least as reflected in the

particular works included in the Other class, contains several

stylistic features similar to S. Notley’s: near exclusive use of

black-and-white; thick strokes; an avoidance of straight lines

or right angles; an expressive child-like writing style; and

textures composed of small lines.

VII. SUMMARY

Here we have described the use of an evolutionary feature

extraction technique, applied to the recognition of artistic

styles. GP was used to evolve a collection of pixel-based

transformations on the space of comic and graphic novel

panel images suitable for classification. This is further evi-

dence that the TEF approach to feature evolution is a highly

robust approach, capable of self-adapting to several different

image databases.

We have shown that high accuracies are attainable, relative

to images by other artists in the database and relative to im-

ages randomly selected from search engine results. Further,

Fig. 6. Examples of S. Notley’s (top) and J. Brown’s (bottom) images.
Images c© S. Notley and J. Brown resp., reprinted with permission.

we have shown that a distance metric can be constructed

from these evolved features, one which allows for a ranking

of a collection of images in such a way that recovers the

validation accuracy of the classifier. Hence, we can describe

the distance between an arbitrary grayscale image and some

given artistic style.

There is evidence that our derived similarity metric can

be used as a means of filtering search results to include

previously unseen but human-recognizably similar artistic

works. We have shown instances in which use of the c-

ness measure: (a) groups similar artistic styles together in

an intuitive fashion; (b) is capable of discovering works by

the same artist from different contexts; (c) is capable of

returning images from a similar sub-genre; and (d) selected

a previously unseen artist with similar aesthetic qualities.

From this, we suggest that a similar system could be used to

create a content-based aesthetic similarity measure for use

in recommender engines or content-based image retrieval

systems.

Obvious future directions involve the similarity metric:

(a) our approach is naı̈ve — it was selected on the basis

of informal experimentation — and there may exist more

analytically motivated choices; and (b) there is recent work

on similarity in visual art that might serve as a basis for

meaningful comparison [6].
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