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Abstract— In this paper, we use Genetic Programming (GP)
to define a set of transforms on the space of greyscale images.
The motivation is to allow an evolutionary algorithm means of
transforming a set of image patterns into a more classifiable
form. To this end, we introduce the notion of a Transform-
based Evolvable Feature (TEF), a moment value extracted from
a GP-transformed image, used in a classification task. Unlike
many previous approaches, the TEF allows the whole image
space to be searched and augmented. TEFs are instantiated
through Cartesian Genetic Programming, and applied to a
medical image classification task, that of detecting muscular
dystrophy-indicating inclusions in cell images. It is shown that
the inclusion of a single TEF allows for significantly superior
classification relative to predefined features alone.

I. INTRODUCTION

In this paper, we explore means of augmenting the typical

use of features in classification problems. Due to increased

capacity for computation, we may now, in a training phase,

explore means of searching image databases directly for

novel database-specific features. Hence, rather than applying

only a general set of predefined features, or devoting signif-

icant human effort to the careful design of database-specific

features, we may use techniques of machine learning in the

creation of new features well suited to a given classification

problem.

Here, we will attempt to evolve transformations on the

space of images, in hopes that particular transforms which

emphasize distinguishing characteristics may be found.

These transforms will be genetic programs (GPs), optimized

through an evolutionary algorithm. A set of moments de-

scribing the transformed image will be extracted, and used

for classification. The introduction of GP-based transforms to

the classification task brings two desireable properties to the

pattern recognition process: firstly, it allows for the search

of the entire pixel-space of images, not just a collection of

predefined features, potentially finding patterns missed by

human designers; and secondly, it allows for recombination

of this pixel-space view of the database into forms useful

to a classifier. This is reminiscent of aspects of Support

Vector Machines, where additional dimensions are added to

a problem space through a kernel to improve classifiability:

here, we do so on the pixel space using a GP kernel.

Our domain of application will be a binary classification

problem based on the detection of a form of Muscular

Taras Kowaliw, Wolfgang Banzhaf, and Simon Harding are with the
Department of Computer Science, Memorial University of Newfoundland,
St. John’s, NL, Canada, A1B 3X5. Nawwaf Kharma is with the Department
of Electrical and Computer Engineering, Concordia University, 1455 de
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Dystrophy in cell nuclei. A database of pre-segmented cell

images has been procured, and we will attempt to train a clas-

sifier to recognize human-defined ground truth. We will show

that the addition of a single evolved TEF to our database will

improve recognition by 38% relative to a set of predefined

features often used for cell classification, obviously allowing

evolution to successfully exploit our additional information

sources. In so doing, we will provide evidence for the efficacy

of an evolutionary design of image features, and the potential

for the automation of pattern recognition.

II. REVIEW

A. Predefined Features and Feature Selection for Image

Classification

Image classification (recognition) typically uses a set of

features to reduce the dimensionality of the pattern space.

A great deal of effort is spent on the design, selection

and weighting of features. Often, practitioners begin with

a set of “standard” features, then use some machine learning

technique to find the most appropriate choices; these “stan-

dard” features often involve statistical moments, or entropy-

or histogram-based measures (as in [1]). Domain specific

measures are used as well, such as the nucleus-specific

measures in the construction of the Wisconsin Breast Cancer

Database [2].

Let an image space (some finite, non-trivial rectangle of

pixel locations) be denoted I , and an image on that space be

denoted f(I). Each pixel p = (px, py) ∈ I is associated

with an intensity, f(p) ∈ [0, 1]. Moments are statistical

descriptions of some given data, often used to break down an

image into numeric values which can be sent to a machine

learning technique. In discrete form, geometric moments are

often computed as

Mmn =
∑

p∈I

pm
x pn

yf(p)

Central moments are computed similarly, although relative

to the centre of mass:

Cmn =
∑

p∈I

(px − x̄)m(py − ȳ)nf(p)

where (x̄, ȳ) = (M10, M01) is the centroid. From these

moments it is possible to define a set of scale- and rotation-

invariant moments, known as Hu’s moments [3].

The entropy of an image is typically defined to be the

entropy of the image histogram. That is, the histogram (h̄) is



interpreted as a probability distribution on the space of pixel

values, then the Shannon entropy is computed:

E(h̄) =

255∑

i=0

−hi log hi

where we have assumed an 8-bit greyscale image. Entropy

can be normalized by dividing by the maximum value, here

log 256.

The fractal dimension of an image, as computed through a

box-counting algorithm, is a rough measure of self-similarity

of an image. First, the image is thresholded, to produce

a black and white version. Next, a sequence of boxes are

computed, those boxes being used as discretizations of the

image. For each box size, the number of boxes required to

cover the image is computed. Finally, the log over the box

sizes is plotted against the log of the number of boxes: the

coefficient of the line of best fit (by linear regression) is

considered the fractal dimension.

Following previous work with cell classification [2], we

also may define several features specifically for cell im-

ages. Given a pre-segmented cell image, we may define the

perimeter, compactness, mean radius, radius variance, and

compactness of the cell boundary. Further, having divided

the image into nuclear interior and exterior, we can compute

the area and greyscale variance of the interior.

B. Feature Creation

By feature creation, we refer to the creation of numerical

methods drawn from the raw images in a database. This is a

contrast with some usage, which refers to the pre-processing

of values of predefined features prior to classification (as in

[4]).

The most significant research dealing with the issue of

feature creation may be divided into four categories.

Historically speaking, the first category contains methods

that did not use artificial evolution in any form. This category

include the work of [5], [6], [7], [8]. All of them used mask-

or pixel-based features; evaluated them using a reference

pattern; had no or limited higher-level feature generation;

and were not ready for real-world application.

The second category comprises methods that employed

polynomial functions of features extracted from the target

pattern. These include [9], [10], [11]. All of these techniques

employ primitive features that are statistical functions of dis-

crete (or discretizable) data signals; create complex features,

in the form of polynomial functions of the primitive features;

and most have applications in the area of machine fault

diagnosis.

A third category covers those methods that involved true

Genetic Programming techniques. The most notable early

efforts in this area include those of [12], [13]. Both methods

evolve a LISP-style program which controls a roving agent

that uses any or all of five evolvable Boolean functions or

masks to correctly identify a character. What distinguishes

these works is that they evolve both the features and the

classifier that uses them.

The final and most modern category is that of Evolvable

Pattern Recognizers. These are perhaps the most ambitious

research projects. Two efforts are worthy of special mention:

HELPR [14] and CellNet [1], [15]. HELPR evolves feature

detectors, but the classification module is completely separate

from the feature extraction module. CellNet blurs the line

between feature selection and the construction of binary clas-

sifiers out of these features. Other differences exist but both

attempts are the only systems, that we know of, that aim at

using artificial evolution to synthesize complete recognition

systems with minimum human intervention.

C. Genetic Programming and Image Processing

Cartesian Genetic Programming was originally developed

by Miller and Thomson [16] for the purpose of evolving

digital circuits. It represents a program as a directed graph,

or, in our specific case, provides a graph mapping inputs to

an output. One of the benefits of this type of representa-

tion is the implicit re-use of nodes in the directed graph.

The technique is also similar to Parallel Distributed GP,

which was independently developed by Poli [17], and also

to Linear GP developed by Banzhaf et al [18]. Harding

and Banzhaf have used Cartesian Genetic Programming to

reverse-engineer common image filters [19], [20]. CGP has

also been used to configure the logic blocks in specialized,

parallel hardware developed, applied to the re-evolution of

known image filters [21], [22]. Evolved image filters have

been used in real-world problems, such as the detection of

mud slides [23].

III. THE MODEL

Here we describe the use of CGP as a means of defining

transformations on the space of images, and the use of these

transformations as evolvable features. Theoretically, nearly

any form of Genetic Programming could have been used,

CGP was chosen due to previous image processing success.

Further, although we apply to medical images, we expect

this approach to be applicable to a wider range of image

classification tasks.

We use CGP as described by Harding and Banzhaf [19],

utilizing a one-dimensional topology, and infinite levels-

back. Each node in the graph has two connections to pre-

vious nodes or inputs (x and y), and uses the function set

{max{x, y}, min{x, y}, x · y, x + y, x/y, x − y, const.,
|x|, x2, xy}, where division is “safe” (i.e. returns 1 when the

denominator is very close to 0). The number of inputs is a

system parameter, and drawn from a square neighbourhood

surrounding a given pixel. The inputs are drawn from this

square neighbourhood from the top left corner, left to right,

top to bottom. The output is the value of the final node in

the graph.

An example image of a CGP with 16 inputs is shown in

Figure 1. Note several forms of “neutral” code: the green

(second), blue (third), and orange (fourth) nodes use one

or less of their two inputs; the grey (second-last) node

does not connect to the pink (final) output node. Removing



Fig. 1. Illustration of a CGP graph with 16 inputs (circles) and 7 nodes
(squares). The output is the value in the final node.

redundancy, this CGP reduces to the function:

φ(i5, i6, i12) = (i5i6)
(34.72(i12)2)

CGP graphs are easily evolvable. Crossover is defined

classically (i.e. single-point swap), treating the graph as a list

of nodes. Mutation operates on the node types, connectivity,

and neighbourhood size, treating each element in turn with

equal probability.

A. CGP Image Transformations

We consider the application of a CGP graph to a pixel

and its neighbourhood. As a neighbourhood, we will define

squares of integer size surrounding the sources pixel.

We shall write the output of an arbitrary CGP graph G
applied to a list of k values as G(x1, ..., xk). Given some

location p ∈ I , we apply CGP graph G to pixel p and

neighbourhood of size n, denoted p̄ = {p0, p1, ..., pn2}, as

follows:

G(f(p̄)) = G(f(p0), f(p1), ..., f(pn2)) (1)

i.e. we retrieve the pixel values f(pi) for i = 1, ..., n2 in the

square neighbourhood surrounding pixel p, and feed them to

the CGP graph in order. Note that if f(q) does not exist for

some pixel q (beyond the edges of the image, say), then we

return the value f(q) = −1. Further, if G(f(p̄)) 6∈ [0, 1], we

replace by the closest boundary value, either 0 or 1.

Given some image f(I), we can define a new image,

G(f(I)) as follows: Let I ′ be an image space of same

dimensions as I . For each pixel p′ ∈ I ′, let f(p′) = G(f(p̄)).
Hence, every CGP graph G can be viewed as a function on

the space of images.

This is but one of many different sorts of filter functions,

and hence is a limit on the space of what can be (easily)

represented. Generalization is a future endeavour of ours,

but beyond the scope of this research.

IV. IMAGE PATTERNS AND EVALUATION

Features are evaluated on the basis of their ability to

separate images in a target database. The database cho-

sen, CellsDB1, was collected by the Centre hospitalier de

1Since undertaking this work, it was shown that some of the images in
CellsDB were misclassified: In proceeding discussions, five images from
the training set, and two images from the validation set were mislabeled.
This will not affect reported validation accuracies by more than 1%.

Fig. 2. Examples of healthy (top row) and sick (bottom row) cell images.

l’Université de Montréal (CHUM), where the causes and as-

sociated symptoms for Oculopharyngeal Muscular Dystrophy

(OPMD) at the genetic and cellular level have been studied

extensively [24]. Intranuclear inclusions (INIs) have been de-

tected via both pathological studies and electron microscopy;

These INIs were tubular, about 8.5 nm in external and 3 nm

in inner diameters, up to 0.25 µm in length, and converged to

form tangles or palisades [25]. Detection of these inclusions

is expected to lead to the detection of OPMD. Hence, we seek

to be able to find features which separate images of cells on

the basis of whether or not they contain INIs. Detecting INIs,

as opposed to other intranuclear patterns, is a difficult task,

requiring training for human classification.

CellsDB was collected and prepared by Tarundeep Dhot

at the Centre for the Study of Brain Diseases at CHUM,

and is pre-segmented so that each image contains a single

cell; It is a collection of images of cells taken at 10x, 20x,

and 40x zoom, divided into two categories associated with

the presence or absence of inclusions indicating OPMD:

“healthy” and “sick”. An example of some cell images may

be seen in Figure 2. Data from the CellsDB has previously

been used for image processing [26], [27].

We wish to award fitness to any particular feature based

on its ability to distinguish between healthy and sick cells.

To do so, we convert the database to a set of features, then

attempt to classify the cells using some given classifier and

evaluation technique. The classifier will return a false positive

rate, FPR, for both classes, which we combine to a measure

of sensitivity-specificity.

SS = (1 − FPR(“healthy”))(1 − FPR(“sick”)) (2)

Hence, SS ∈ [0, 1] is maximized for perfect recognition.

It is trivial to include weights for the various classes into

such a function, as may be necessary for medical application,

and it is unlikely that evolvability will be affected by such

weighting.

The features and evaluation method changed between

training and validation runs. The pattern database was broken

into two sets: 186 healthy and 200 sick cell images for

training, and 200 healthy and 200 sick cell images for

validation. All classifiers and evaluation techniques were

implemented via the Weka machine learning system, version

3.5.7 [28].



For training runs, a set of 16 features were computed for

the TEF-transformed images: {M00, M10, M01, C11, C20,

C02, C12, C21, C22, H1, ..., H7}, where Hi is Hu’s ith
invariant moment. These 16 features of transformed images

were trained and evaluated on the training set of images using

5-fold cross validation.

For validation runs, a set of 40 features were com-

puted: Firstly, the 16 + 8 predefined moments applied to

untransformed images, consisting of the 16 aforementioned

moments, along with the set {threshholded area, variance,

mean radius, radius variance, perimeter, compactness,

entropy, fractal dimension}. Secondly, the 16 aforemen-

tioned moments applied to the transformed images. These 40

features were trained and evaluated on the validation set of

images using 10-fold cross validation.

The reason that a smaller set of features was used in the

definition of the training evaluation is as follows: randomiza-

tion of the database prior to classification is a useful feature

to help prevent overfitting, but leads to a stochastic fitness

function. Beginning with a set of features which is already

adept at classification, as the predefined features are, makes

the variance due to stochasticity greater than fitness gains in

early evolution, hence hindering the selection operator.

V. EXPERIMENTS

A. Initial Classification Experiments

Initial classification attempts were undertaken using the 24

predefined features and moments on CellsDB. The classifiers

used included Decision Trees, Ridor rules, and k-NN. These

were run 40 times and averaged to include the variance

associated with randomization of the database patterns. Next,

we evaluated the performance of randomly-generated TEFs

under classification. For each of the above classifiers, a

randomly generated TEF was instantiated, and the 16 ad-

ditional moments generated by the transform were added to

the database. This was repeated 40 times, and averaged. The

results are shown in Table I.

As can be seen, there is little difference between the

SS value for simply the pre-defined features and moments,

and the inclusion of a randomly defined TEF. However, the

variance of values increases under the addition of a TEF,

as the new feature values allow for helpful or misleading

/ confusing information to the classifier. Note the additional

time requirements for additional moment calculations, which

clearly dominate the process.

Several feature evaluation routines were used in an attempt

to improve classification accuracy (Information gain attribute

evaluation, χ2 attribute evaluation, and principal component

evaluation), but none significantly improved performance

(indeed, most significantly lessened classifier accuracy).

B. TEF Evolution

We used a standard evolutionary algorithm, as described

by Eiben and Smith [29]. Following an informal parameter

search, the following parameters were chosen for the evolu-

tionary algorithm:

initial pop. size 400 pop. size 200

prob. mutation 0.02 prob. crossover 0.6

prop. elite 0.01 tournament size 3

mask size 6 × 6 CGP graph size 100

Each EA was run for 50 generations, using a 1-NN classifier.

40 runs were undertaken in total.

Evolution was quite successful at increasing fitness (train-

ing SS), which increased from a mean best fitness of 0.523

in the first generation (averaged over 40 runs, s.d. 0.026),

to a mean best fitness of 0.620 (s.d. 0.046). In a few cases,

evolution optimized training SS at the expense of validation

SS, but a good general increase in the latter was seen in

most runs. Mean best validation SS for the final generation

was 0.676 (s.d. 0.052), and maximized at a value of 0.766.

This is a 32% improvement over the expected performance

of the best classifier found for predefined features alone.

C. Best Discovered Transform

Fig. 3. Illustration of best discovered CGP.

Fig. 4. Examples of output of best discovered TEF: View of original cell
images (rows one and three) and images subjected to action by CGP (rows

two and four). Top rows are healthy, bottom rows are sick. (Transformed

images have been subjected to contrast stretching and colour inversion to
make distinction between black and dark grey more visible.)



TABLE I

COMPARISON OF CLASSIFICATION ON STANDARD DATABASE OF UNEVOLVED FEATURES (∅) TO DATABASE AUGMENTED BY A RANDOMLY-GENERATED

TEF. ALL FIGURES AVERAGED OVER 40 RUNS, WITH STANDARD DEVIATION IN BRACKETS.

classifier transform SS TPR(H) TPR(S) time ms

decision tree ∅ 0.4945 (0.0201) 0.7223 (0.0349) 0.6858 (0.0335) 369.3 (101.1)

random TEF 0.5213 (0.0800) 0.7236 (0.0633) 0.7177 (0.0534) 77883.4 (9135.9)

ridor ∅ 0.4606 (0.0236) 0.7025 (0.0841) 0.6646 (0.0829) 473.3 (109.6)

random TEF 0.5034 (0.0586) 0.7061 (0.0735) 0.7172 (0.0825) 76374.3 (12943.5)

1-NN ∅ 0.5166 (0.0117) 0.7323 (0.0137) 0.7056 (0.0126) 601.9 (73.2)

random TEF 0.5527 (0.0698) 0.7585 (0.0472) 0.7262 (0.0464) 99860.2 (16031.5)

5-NN ∅ 0.5803 (0.0157) 0.7735 (0.0182) 0.7503 (0.0122) 174.4 (99.6)

random TEF 0.6108 (0.0670) 0.7993 (0.0582) 0.7623 (0.0302) 77368.5 (13933.3)

TABLE II

COMPARISON OF CLASSIFICATION RESULTS FOR UNEVOLVED VERSUS BEST EVOLVED FEATURES.

classifier transform SS TPR(H) TPR(S)

5-NN ∅ 0.580 0.774 0.750

1-NN best TEF 0.766 0.878 0.873

decision tree best TEF 0.801 0.912 0.878

In this section, we have extracted the best evolved trans-

form and will explore it in more detail. The best individual

of the final (50th) generation of the highest validation fitness

run was selected. This best individual had a sensitivity-

specificity of 0.766, encompassing true positive rates of 0.878

for healthy cells and 0.873 for sick cells.

The same evolved attribute values, when evaluated using

a J48 Decision Tree instead of 1-NN, gives a sensitivity-

specificity of 0.801, encompassing true positive rates of

0.912 for healthy cells and 0.878 for sick cells, or a 38%

improvement over the expected performance of the best

classifier found for predefined features alone. Performance

for the best discovered TEF, relative to the best expected

performance for the unevolved features alone, is summarized

in Table II

The best transform, once neutral code is removed, may be

written as the following neighbourhood function:

o(i0, ..., i35) = min{i11 − i15, (i9 − max{i6, i25})
i8}

The graph view is shown in Figure 3. This function returns

black (0) nearly always, except when both i11 − i15 and

(i9 − max{i6, i25})i8 are (relatively) high. The first subsec-

tion ensures variance on the right of the neighbourhood is

high (excluding inclusions that are too large), and the second

subsection ensures that the left and bottom-left are mostly

white, excluding inclusions too small. Hence, we detect the

right half of inclusions of the proper size and variance.

Note that this function works for several different microscope

zoom levels simultaneously.

While non-OPMD indicating inclusions are still high-

lighted using this function, the OPMD-indicating inclusions

are highlighted with more intensity, hence allowing for a

greater recognition of the cells than original image features

alone. Examples of output are shown in Figure 4.

Feature selection was run on the database of the original

moments and the evolved moments, using an Information

Gain Attribute Evaluator. The evaluator selected 30 of the

features as significant, discarding the other 10. The top ten

ranked attributes, by information gain, were all moments of

the evolved transformed image.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have defined a mechanism for the

automated discovery of novel database-specific features via

evolutionary computation. This system has been applied to a

new and significant recognition problem in medical imaging,

and shown to significantly improve overall performance. In

the short term, we have discovered a set of features that will

achieve a 91% recognition for healthy cell images, and a

88% recognition for sick cell images, a 38% improvement

over predefined features alone. More generally, we have

achieved a significant advance in the capacity of automated

systems to automatically adapt to a given pattern database

without human expertise, or, perhaps, with greater efficacy

than human designs.

To properly evaluate the power of this new approach,

several future directions immediately suggest themselves: (a)

to apply the same framework to several different databases,

showing both generality and the capacity for automated

adaptation; and (b) to extend the system to use a collection of



features rather than a single graph, or to evolve the choice

of moments simultaneously. These steps bear potential to

advance the goal of a fully-automated pattern recognition

system. Both steps are currently being explored at the Memo-

rial University of Newfoundland.
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