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Abstract—In this paper, we explore a generative art system de-
signed to promote the creation of a diverse range of aesthetically
pleasing images. We introduce our system, EvoEco, an agent-
based pixel-level means of generating images based on artificial
ecosystems. This art system is driven by interactive evolutionary
computation, and further augmented using special measures to
promote the diversity of the individuals. Following previous work,
we explore a tractable definition of creativity and its addition to
this interactive search. EvoEco was released online, and used by
forty-one anonymous users to generate artwork. Here we present
some of the discovered results.

Index Terms—Interactive evolution, computational creativity,
electronic art, generative art, artificial ecosystem

I. INTRODUCTION

Generative art involves the use of a generative process
(e.g. an algorithm, stochastic process, or dynamical system)
for the creation of artifacts. In this way, a simple seed (e.g. a
parameter set, a genetic representation) is transformed into
an aesthetically rich and compelling form. This increased
capacity, however, comes at the expense of prediction, and
necessarily involves the introduction of model biases [1]. Here
we explore the use of an artificial ecosystem as a generative
system for the production of novel images.

Biological ecosystems are an integral component of evo-
lutionary diversity, where, for example, niche construction is
known to support stable polymorphisms and unusual evolu-
tionary dynamics relative to non-niche enabled models [2].
Artificial ecosystems have the capability to support a rich
array of emergent dynamics quite independent of evolutionary
pressures. That is, in a simple particle-based environment
using only fixed agent rules, the resulting dynamics alone are

capable of generating complex patterns and life-like properties
[3].

Due to their ability to generate complex structures and
interactions through carefully coupled feedback components,
“ecosystemic” models have become popular in generative art
over recent years [4], [5], [6], [7], [8]. In a review on the
topic, Dorin argues that use of ecosystemics allows artists to
use a machine as a complex dynamical system, promoting:
coherence and unity in the face of perturbation; multi-scale
temporal complexity; the autonomous production of novelty;
and susceptibility to external control [9]. Our primary concern
in this paper is their ability to generate novel and multi-scale
patterns autonomously.

Driessens and Verstappen’s E-volver, for example, is an
interactive evolutionary artwork based on ecosystemic prin-
ciples, and often displays unexpected and aesthetically rich
behaviours. This system is driven by user-guided aesthetic
rejection of the least preferable of a population of animations
that are produced by multiple cellular automaton-like agents.
Agents’ behaviours are coupled via their mutual modification
of a shared environment [10].

In this paper we introduce an ecosystemic means of gener-
ating images, loosely inspired by Driessens and Verstappen’s
work. Our EvoEco system utilizes a generative process based
on the interaction of heterogeneous agents in a shared world.
Several pixel-sized agents act and react locally in this world,
over time generating an animation and, ultimately, a final
image which we term the output artwork. This system is
controlled via an interactive evolutionary algorithm, allowing
a user to influence the gradual development of aesthetically



pleasing images. Our system was augmented with a measure
designed to promote diverse designs in the evolutionary popu-
lations based on a new theoretical definition of computational
creativity.

II. COMPUTATIONAL CREATIVITY

The literature on creativity is vast. A popular definition of
creativity involves the generation of appropriate novelty [11].
That is, a creative system reliably generates artifacts or ideas
that are new relative to some personal or historical pretext, but
also appropriate, useful, or valuable to a particular context or
task.

It is important to note a subtle, but important distinction,
between aesthetically pleasing and creative systems. The latter
does not preclude the former, but they are in general, inde-
pendent. The possibility exists that some well-chosen formal
notion of creativity can be used to drive automated systems
to greater utility: some progress has already been made based
on psychological principles [12].

Dorin and Korb have recently introduced a new definition:
“Creativity is the introduction and use of a framework that
has a relatively high probability of producing representations
of patterns that can arise only with a smaller probability in
previously existing frameworks”. Hence, a framework can be
creative, based on its ability — according to some measure —
of reliably generating novel patterns. This definition, unlike
many, considers creativity as independent of notions of value
and appropriateness [13].

Previously, we have shown that this definition of creativity
can be interpreted in manner that is computationally tractable.
Our interpretation is slow to compute, but, an approximation
of the formal definition has been shown experimentally to
approximate the exact measure in an interactive electronic
art task. Further, the use of this approximate measure in an
evolutionary art task at times returns systems which many
humans deem “creative” [14].

Unlike our previous approach, here we explore a more
robust generative art mechanism, more likely to generate
responses which users find genuinely novel or creative (based
on the successes of previous ecosystemic artworks). Our
interpretation of the Dorin & Korb definition is developed
below.

Firstly, we define a feature space on which we will evaluate
patterns. Drawing image features from image processing [15]
and content-based image retrieval [16], [17], we can choose
a set well suited but independently developed for human
perception. Here we select three successful measures for
detecting “creative” regions in a previous evolutionary art
task, adapted for colour images: var(H(f)), var(S(f)), and
E(B(f)), where f is a colour image of any dimensions,
var is a measure of the variance, H , S and B are the
hue, saturation and brightness, and E is the entropy of the
histogram. Despite success in previous applications, we do
not use spatial moments, since for reasons made clear later,
our developed images show little respect for image regions.
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Fig. 1. An illustration of the concept of a creative region. Two hypothetical
distributions are shown, S1 in light grey, S2 in medium grey, with their
intersection highlighted in dark grey. A single “hump” exists in which
Pr[S2(x) ∈ r] > τ + m.e.(S2) and Pr[S1(x) ∈ r] = 0, so r, drawn
between dotted lines, is a creative region.

We are interested in the creativity of systems: generators
which accept some seed and (possibly stochastically) generate
some pattern p ∈ P . Our notion of creativity considers the
capacity of a system S2 to reliably generate patterns which
a system S1 cannot. One can interpret S1 as the cognitive
worldview of an audience when presented with the work
of a new artist, for instance, or as a memory of systems
already explored in an interactive design task. Under this
perspective, we make nearly no assumptions regarding the
distribution of system outputs, save that non-trivially similar
patterns lie in some small but minimally sized interval in
feature space. Notably, we will make no other assumptions
about the relationship between distance and dissimilarity.

Note that in an evolutionary computation task, any indi-
vidual, along with the genetic operators, can be considered a
system. That is, assume we have an individual with genotype
g ∈ G, generative process δ, phenotype p = δ(g) ∈ P , and
some stochastic genetic operator, say mutate : G → G. Then,
we can consider (g, δ,mutate) a system which generates
output δ(mutate(g)). That is, individual g is viewed as a
system for producing child patterns.

Our interpretation of the Dorin & Korb definition concerns
the (Boolean) capacity of S2 to reliably generate patterns that
S1 cannot. We restrict our attention to intervals of a minimum
size1. Given some candidate interval, r, we can estimate the
probability that S1 and S2 generate points in said region. If
S2 can be shown to reliably generate points in r (i.e. the
probability of finding points in r exceeds some threshold τ
and the margin of error associated with the sample m.e.(S2))
while the estimated probability of S1 generating points in r
is zero, then we claim that S2 is creative relative to S1. An
illustration of this concept of a creative region is illustrated in
Figure 1.

We are left with the question of how to find such intervals
r. We do so using our samples in feature space. An attempt

1The minimum size was chosen so as to ensure that a change of this minimal
amount was perceptible. We estimated this distance to be approximately β =
σi
5

, where σi is the standard deviation of a sample over the i-th feature.



is made to find intervals surrounding each sample point from
S2 provided. If our sample pattern is p = (F1(p), ..., Fk(p)),
then we initially define our interval about p as

b(p) =

[
F1(p)−

β

2
σ1, F1(p) +

β

2

]
× (1)

...×
[
Fk(p)−

β

2
σk, Fk(p) +

β

2
σk

]
where σi is the standard deviation of the system S2 in the
i-th dimension. For each such created interval, we ask if it
does not contain points from S1 (as we know it contains at
least one point from S2). If so, we attempt to generalize it. For
each dimension in turn, we widen the width of the interval by a
factor of 2. If we successfully define a new interval containing
equal or greater points from S2 and none from S1, we retain
this new interval. Once we have traversed all dimensions, if
our new interval is an improvement on the original, we traverse
the dimensions again. This process will terminate either when
a locally maximal interval is found, or when the interval covers
the entirety of all dimensions.

If we can find an interval containing sufficient points,
then we declare S2 creative relative to S1. Alas, in cases
where this technique is unable to find a creative interval,
we cannot conclude that S2 is not creative relative to S1,
since the possibility of an interval discoverable through some
other means, although unlikely, cannot be excluded. Generally,
expending additional effort to make such a guarantee is of
dubious value, since there is already a possibility of missing
creativity in the choice of features to describe the space,
i.e. that some other significant but unconsidered feature might
exist that separates S2 from S1.

Since searching for our formally defined creativity is a
slow process, we also consider a multi-valued procedure for
estimating relative creativity quickly. Creativity lite will take a
smaller sample, and return the maximum number of samples
from set S2 that can be found in some region containing no
samples from S1. We use a sample of 1,200 points from S1

and 10 points from S2. Intervals are constructed using the
technique described above. The more points from S2 that
are returned, the more creative lite the generator. We have
previously shown that use of creativity lite in an interactive
evolutionary algorithm tends to push the optimization toward
individuals considered creative by our formal definition [14].

III. AN ECOSYSTEMIC GENERATIVE ART SYSTEM

Like Driessens and Verstappen’s E-volver, our image gen-
eration system is based on metaphors from biological ecosys-
tems. EvoEco, is an evolutionary platform which evolves
multi-agent ecosystemic generative art. It is influenced by E-
volver in that we have borrowed the concept of a collection
of distinct pixel-sized agents altering a shared HSB-defined
world. Otherwise, all algorithms are our own. We break
the description of EvoEco into two parts: the ecosystemic
(generative) stage, through which a genome is transformed
into a phenotype (image); and the evolutionary stage, during
which particular individuals are selected and evolved.

Fig. 2. Four timeslices of the development of the final phenotype of
an evolved individual. Individual time proceeds downwards. This individual
consists of five agents, one of whom draws an initial blocking pattern, while
the remaining four elaborate on the edges.

A. Ecosystemic Development in EvoEco

An “individual” is an ecosystem: a collection of agents
on a toroidal grid. Over discrete time, the agents and their
interactions on the grid will produce an image, referred to as
a phenotype. An individual’s grid is of size w × h of HSB
values2, initialized as a field of colour (indH , indS , indB),
an individual’s genetically specified preferred colour.

Each individual is a collection of k agents, placed in one
of six-by-six equally spaced grid positions. Each agent then
executes its program for 2wh time steps, more than sufficient
time to (theoretically) visit every pixel in the image. Agent
actions are executed serially, according to their priority in the
genome (in practice, given the small number of agents in a
large space, there is little to no difference between this and
buffered parallel execution). Development can be viewed as
an animation, proceeding from a simple flat colour to the final
image. The mapping between individual and grid to phenotype
is deterministic, however different grid sizes lead to different
phenotypes. Some snapshots of the development of an evolved
individual is shown in Figure 2.

1) Agents: An agent is the size of a single pixel, located
somewhere in the image. At every time step, it: (a) queries
its local neighbourhood, collecting a description as input;
(b) queries its genome, mapping the input to some output
variables; (c) colours the current pixel according to those
output variables; and (d) moves by a single pixel in the

2Typically we use a size of 224× 168, chosen for a 4:3 aspect ratio, and
such that a square of 4× 4 individuals can be displayed easily on a monitor
of resolution 1024× 768.
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Fig. 3. An example of an agent’s genetic programs visualized as a tree.
Redundancy (i.e. neutral code, or “junk DNA”) has been trimmed. This same
individual can be written in mathematical notation as:

aH = 0.191

aS = sin(sin(Hmean)Bmean)

aB = (0.046− Smean) + max{Smax,max{Bnext, Hmean}}
adir = sin(Hprev)−max{sin(dBmax ), 0.47}

where the leaf nodes in the trees correspond to some of the twenty-six inputs.

direction specified by its output. Each agent has a distinct
genome, meaning each executes different behaviours in a
shared world.

An agent can be written:

a = (g, t1, t2, sD, delay, stop, (aH , aS , aB), adir)

where sD, is a starting direction, delay and stop indicate when
an agent should start or stop execution during its lifespan,
(aH , aS , aB), and adir are four GP-trees used to determine
the colour that an agent draws in the current pixel, and the
direction it travels next, and g, t1, and t2 are floating values.
The latter two are time periods used in looping functions.

First, the agent collects a description of its Moore neigh-
bourhood. This description consists of a list of twenty-six vari-
ables, which include: the maximum, mean, and minimum hue,
brightness and saturation of the neighbourhood, the associated
directions, the genetically controlled constants and looping
variables, the previous direction of travel, a (consistently
computed) random value, and the directions associated with
edge-following for dark and light edges.

Next, the agent will paint its current pixel to a new HSB
colour triple determined via three genetic programs, named
aH , aS , and aB .

Finally, the agent will move in a direction specified by a
fourth genetic program, adir.

The mapping between the inputs and the four outputs is
accomplished through four binary trees of depth four. The
leaves of all four trees are mapped to input variables. The
non-leaf nodes contain an integer specifying a function type,
and a floating point number specifying a constant value. All
arithmetic is done on the toroidal number space [0, 1], meaning
that the space is treated as a ring. An example of an agent’s
GP trees is shown in Figure 3.

2) Genetic Initialization and Operators: An individual is
the (k + 4)-tuple:

I = (k, (indH , indS , indB), a
1, ..., ak)

A B C

Fig. 4. Examples of select randomly-generated genotypes grown at two
different sizes.

Let urand be a function which chooses with a uniform random
selection from its arguments. We initialize an individual by
setting k = urand{2, ..., 6}, indX = urand([0, 1]), and then
generating k randomly initialized agents.

An agent, we recall, can be written

a = (g, t1, t2, sD, delay, stop, (aH , aS , aB), adir)

An agent can be randomly initialized by generating
g, t1, t2, sD all as urand([0, 1]), delay = urand([0, 0.5]),
stop = urand([0.5, 1]), and then randomly generating the four
action trees.

The trees (aH , aS , aB), and adir are each represented by a
list of numbers:

• 2d−1 input nodes, each represented by an integer ∈
{0, ..., 25}.

• 2d−1−1 non-leaf nodes representing functions in the tree,
represented by integers ∈ {0, ..., 11}.

• 2d−1 − 1 floating-point constant values in [0, 1]

Tree connectivity is complete. All of the values are initialized
uniformly and randomly, save the functions in the non-leaf
nodes. These are chosen from the following set of (maximum)
two parameter functions, defined on inputs x and y:{

id, x+ y, x− y, xy, max{x, y}, min{x, y},
sin(x), x

y , incdec, x+y
2 , const

}
where id simply returns the value x, division is “safe”, const
returns the associated constant value, and incdec(x, y) = x+ 1

8
if y > 0.5 or x − 1

8 otherwise. Each function has a 0.07
probability of being chosen, save the id function, chosen with
probability 0.23. We purposefully increased the frequency of
id nodes as we expected them to be used as structural nodes in
the otherwise fixed topology trees, and hence to be of greater
importance.

Figure 4 shows the phenotypes produced by a sample
of randomly generated individuals. We may also describe
the behaviour of random initialization of any individual in
feature space: they have mean values for var(H) of 0.1043
(s.d. 0.1108); for var(S) of 0.1007 (s.d. 0.1087); and for E(B)
of 0.2241 (s.d. 0.2622).



An interesting feature regarding the development of images
via our ecosystemic techniques is that a change to the size
of an individual’s world leads to a completely new devel-
opment. This redevelopment is also illustrated in Figure 4.
We computed 10,000 random genotypes, generating their
phenotypes at two sizes: 224×168 (large) and 60×54 (small).
Speaking informally, the redevelopment of the phenotype at
a smaller size usually generates an image that resembles a
sub-image of the larger original (examples A). In some cases,
the smaller image resembles a scaled-down version of the
original (B). Occasionally, there exist completely new patterns
at one environmental size that do not exist at another (C).
Regardless, there is a clear relation between the images grown
from the same genotypes, at least on their location in feature
space. Between unrelated genotypes developed in the large
environments, we computed a mean distance of 0.479 (s.d.
0.310). Between phenotypes of the same genotype developed
at large and small environments, we computed a mean distance
of 0.082 (s.d. 0.111).

The use of an artificial ecosystem implies the creation of
patterns via the interaction of specialized agents, and the
reaction of agents to the niches built by others. As such,
genetic operators based on agents are strongly desirable,
especially the possibility of combining specialized agents from
one individual into another. Hence, unlike many interactive art
tasks, we lust after a meaningful crossover operator.

We can apply crossover to a pair of agents, a1 and a2, by
performing sub-tree crossover on the GP trees. We initially
define child agent a3 to be an exact copy of agent a1.
Next, for each of the aH , aS , aB , adir trees, we randomly,
uniformly, and independently select an index in the range
i ∈ {0, ..., 2d − 1}. For each index and tree, we replace the
node value referenced by that index, and all children, with the
appropriate values from agent a2. We use the same index and
children to swap the constant values associated with the chosen
tree as well. Finally, we randomly choose values from either
parent for the new variables g, t1, t2, sD, start and delay.

Given two individuals, I1 = (k1, (ind1H , ind1S , ind
1
B), a

1
1,

..., a1k1) and I2, we can generate a new individual I3 via
crossover:
k3 = urand(k1, k2)
ind3X = urand(ind1X , ind2X)
for m ∈ {1, ..., k3} do
i = urand(1, ..., k1), j = urand(1, ..., k2)
a3m = urand(a1i , a

2
j , crossover(a

1
i , a

2
j ))

end for
We can apply mutation to an agent by applying it to the

variables comprising the collection of trees. For each variable,
each element has a probMut chance of being mutated, inde-
pendently. If selected, its value is replaced by a new uniform
randomly selected value.

Given some individual I1 and a probability of mutation
probMut, we can generate a new individual I2 via mutation:
first, with probability probMut, we alter the individual’s ge-
netically specified colours by some Gaussian noise of variance

0.2. Next, we mutate each agent with probability probMut.
Next, so long as the individual is not too large or small (i.e. so
long as 2 ≤ a2k ≤ 15) we add a new agent, or delete one,
with probability probMut. Adding a new agent is done either
through cloning an existing agent in the genome, or by adding
a newly initialized agent, allowing for both duplication of
desirable properties and increase in complexity.

B. Evolution

In designing our IEA, we were motivated by three con-
straints. Firstly, since the intermingling of agents from pre-
ceding individuals is an intuitive means of defining a new
individual, we expected that crossover was an important ge-
netic operator. Secondly, we designed a simple, single-click
interface to make the survey accessible to a broad audience.
Finally, we hoped to allow the user to devote their focus on
their preferred individuals, rather than on the least favoured,
as seems to be demanded by aesthetic rejection. To that end,
we chose a model in which users selected their preferred
individual from a population, from which any next generation
individual was generated through mutation or crossover with
the preceding individual in its place. This IEA is described
below.

Our system is initialized with two background structures.
Firstly, a memory consisting of 12,000 points in feature space.
These points correspond to pre-computed randomly generated
individuals. Secondly, a database consisting of 75 pre-evolved
individuals selected by the authors. These were included to
help generate appealing individuals in the initial generations.

Our GA consists of a two-part interface: a population
of sixteen individuals, and a history, initially empty. The
population is initialized randomly, and at any generation, a
user may choose to select an individual from the population,
select an individual from the history, or respawn the entire
population. A screenshot of the interface is shown in Figure 5.
A selected individual from the population or the history will
be referred to as the Khan3.

Once a generation is completed (i.e. a user selects an
individual or “respawn”), every population member is added to
the memory. Each is slotted into a random location, replacing
a previous entry. Hence, the memory size is constant.

Given the selection of a Khan, the next population is gener-
ated as follows: First, the Khan is added as the top item of the
history; Next, a single individual is added to the population via
creativity search, discussed below; Next, the remainder of the
population is generated via crossover, with probability 0.33, or
otherwise, via mutation of the Khan. The crossover operation
typically utilizes the Khan and the original member of the
population being replaced (with probability 0.6). Also possible
is a crossover between the original population member and a
randomly chosen member of the history (with probability 0.2)
or with a randomly chosen member from a database of pre-
evolved individuals (with probability 0.2).

3Named in honour of Genghis Khan, who geneticists believe to be a direct
male-lineage ancestor of approximately 0.5% of the world’s population [18].
It’s good to be the Khan!



Fig. 5. A screenshot of the EvoEco Applet. On the left is the population
of sixteen individuals; towards the right is the history, showing the previous
eight choices of Khan; on the far right are the user controls.

Creativity search consists of the following process: First.
sixteen individuals are generated via mutations of the preced-
ing population (or randomly, in the initial population). For
each of these sixteen individuals, ten mutated children are
created. The potential individual with the highest creativity
lite score over its ten children compared to the memory is
selected, and added as a member of the population.

The EvoEco system was instantiated as a Java applet, and
linked from a webpage. The webpage was advertized via
email, fliers, and postings on the authors’ websites. The applet
was also installed as a part of a group gallery exhibit, Biotope,
at the Guilford Lane Gallery in Melbourne, where it ran
for approximately three weeks. Little attempt was made to
ensure a representative sample: our advertising was aimed at
an artistically-literate audience.

IV. RESULTS

We obtained forty-one responses from anonymous users,
having excluded several responses due to technical difficulties.
Despite our biased advertising we obtained results from users
in relatively diverse demographics, as measured by metrics
included in a short survey.

As expected, the genetic operators on the space allowed
for a form of evolvability; That is, fit individuals under these
operators tend to produce varied but fit children. Indeed, many
particular agents were found to play specific and transferable
roles in the development of images. For instance, we identified
agents specialized at the creation of an initial form. Some drew
outlines of circles, rectangles or octagons. Others were found
playing roles associated with the image post-processing: for
instance, agents were found which would execute a random or
semi-random walk over an image blurring the area over which
they passed (using the GP mean function); other individuals
would pass over an image adding a particular tint by slightly
altering the H channel, or a gradient of tint, or darkening
or brightening an area using the GP incdec function. Many
agents specialized at following existing edges, either thicken-
ing or adding elaboration to the curves, or filling in enclosed

Fig. 6. The phenotype of an individual selected by one of our anonymous
users (top), and two related individuals created via crossover and mutation.

areas. Indeed, there existed many structures and effects which
were highly transferable via the genetic operators, leading to
offspring that preserve specific qualities of an image, without
necessarily preserving the quantitative feature values.

One such individual and some of its children are shown
in Figure 6. In this instance, although the overall form of
the images changes dramatically (as measured by a spatial
moment on the brightness channel, say), there is consistency in
the produced structures (e.g. thin and fat black lines) and effect
(e.g. consistently oriented fuzzy edges, textured background).

A second critical question had to do with the scalability
of the generated individuals. Due to the demands of online
delivery, only modest hardware assumptions could be made,
resulting in very small phenotypes. As anticipated from our
earlier experiments with randomly generated genotypes, there
was a great deal of similarity between phenotypes of evolved
individuals regrown at different sizes. We regrew each of
the selected individuals at several sizes and aspect ratios
(800 × 600, 900 × 900, 1024 × 728, 1440 × 1080), and
examined the results. Six out of forty-one showed wildly
different phenotypes at some size of growth: usually, this
was due to a trivial phenotype. These trivial phenotypes were
usually due to a lack of meeting between agents travelling
in orthogonal directions, due to a change in width, height, or
aspect ratio. In all other cases, however, distance in feature
space was small relative to unrelated genotypes, and in visual
terms, recognizable structures remained intact at all sizes.
Some examples are shown in Figure 8.

Some samples of evolved outputs are shown in Figure 7.
There is a great deal of diversity in the results. Different
users produced images with highly distinct aesthetic styles.
Indeed, the complexity of the evolved images range from
near noise to subtle textures; the level of image structure
ranges from highly patterned and ordered fields of varying but
similar elements (e.g. fields of circles), to images resembling



Fig. 7. A sample of outputs evolved by the authors and the anonymous artists. Best viewed in colour. More examples, sample applet output, and high-resolution
versions are available at: http://www.csse.monash.edu.au/cema/evoeco.



Fig. 8. Evolved individuals regrown at: the original size (224× 168), along
with two larger sizes (900× 900, 1440× 1080).

pure noise, to images consisting of flat colour and simple
geometric constructs. Some images exhibited a wild range of
colours, while others showed subtle changes within a small
and consistent palette.

This diversity of visual form is a testament to both the ca-
pacity for diverse behaviours present in an artificial ecosystem,
and also in the capacity of the Dorin & Korb creativity measure
to help find such regions of genotypic space.

V. CONCLUSIONS

In this paper, we have introduced EvoEco, a novel ecosys-
temic art system driven by an interactive evolutionary al-
gorithm. EvoEco was augmented by an interpretation of a
theoretical definition of creativity in an attempt to further
explore the diversity expected from an artificial ecosystem.
The system was explored by the authors and by forty-one
anonymous online users. We have argued that, in a visual
sense, the system is highly evolvable: that is, there exist
genetic operators on the space of EvoEco individuals that
search and recombine individuals in visually meaningful ways.
Further, we have argued that these individuals are capable
of scaling, allowing for an exploration on a space of small
(and hence, fast) images to produce individuals capable of
being regenerated into high-resolution images. Results of this
exploration have produced popular images reflecting many
diverse aesthetic styles.

EvoEco demonstrates that ecosystemic models can evolve
pleasing images and produce a wide range of aesthetic styles.
This establishes it as a system capable of evaluating claims
regarding computational creativity. Our current work involves
doing precisely this with respect to our creativity definition.
We have conducted a user survey contrasting the Dorin &
Korb definition against other means of generating population

diversity, evaluating the results on the basis of user survey
responses [19].
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