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Motivation

• To develop a simple model of Artificial Embryogeny

• To create a non-trivial and externally-defined eval-

uation for “organisms”

• To explore the use of Evolutionary Computation as

a means of testing model-level decisions.



Overview

• Review of Artificial Embryogeny

• Deva model

• Truss Interpretation

• Results of Evolution

• Future Directions



Review



Artificial Embryogeny

Usually studied in the context of Evolutionary Compu-

tation

A mid-step between genotype (representation) and fit-

ness evaluation: phenotype (organism).

Inspired by, but not necessarily resembling, biological

embryogenesis.

Usually undertaken to understand or exploit principles

of biological development.

Many different models!



“Plausible Models”

Many researchers are interested in the creation of “plau-
sible models” of actual embryogenesis.

Some models include:

• Various models of plant growth (Prusinkiewicz, Lin-
denmayer, Rolland-Lagan; 1990, 2006)

• Gene expression via cis-regulatory regions (Kumar,
Bently; 2003)

• Cell growth, including inter-cellular forces (Eggen-
berger Hotz; 2003)

Embryogenesis is very complex and highly non-linear!



Exploitation

Other researchers are interested in exploiting principles

of embryogenic growth for the design of solutions of

engineering problems.

Including:

• Neural Networks (Eggenberger Hotz, Gmez, Pfeifer;

2003)

• Circuits (sorting networks) (Sekanina, Bidlo; 2005)

• Self-assembly of a CAD shape (Stoy, Nagpal; 2004)

• Micro-structures (Basanta at al; 2004)



Expected Gain

Some of the properties of AE models that have been

demonstrated in particular contexts:

• Canalization of evolutionary space, allowing for the

design of significantly larger organisms than is possi-

ble through direct encodings (Harding, Miller; 2006)

• Note: Consequently, many designs un-reachable!

• Self-maintenance and repair (Miller; 2004)

• Re-use of designs in new environments (Kowaliw,

Grogono, Kharma; 2004, 2007)

• Simultaneous development of a construction plan

(Reiffel, Pollack; 2004)



The Deva Model



A Deva Algorithm

Consists of:

• A Developmental Space, D ⊂ Z2, with discrete time

• A set of cell types (colours) C, |C| = nc

• A set of cell actions A

• A transition function, φ : N → A, where N is a

description of a neighbourhood of cells from C.



A Deva Algorithm

Starting from a single cell in D, the cells execute actions

from A, leading to some sort of growth.



Deva Growth Algorithm

Time t← 0

Initialize developmental space Dt

while Dt 6= Dt−1 do

t← t + 1

Dt ← Dt−1

for all Cell c ∈ Dt−1 do

if c has sufficient age and crc then

Action a← φ(µc)

Decrement crc appropriately for a

Execute a in Dt

end if

end for

end while



Deva 1 Cell Actions

• Nothing, the empty action

• Die, which removes the cell

• Divide, which creates a clone of the cell

• Specialize(x), which changes the cell’s specializa-

tion to x ∈ C

• Elongate, which causes the cell to elongate



Deva 1 Transition Function

Cell-based: each cell decides next action.

Maps from a description of a cell’s neighbourhood to

an action, φ(µc) = a

Description is a count of cell types in the (extended von

Neumann) twelve-neighbourhood,

e1, ..., e12



Deva 1 Transition Function con’t

φ consists of a listing of |φ| descriptions, associated with
actions.

(c, h1, ..., hnc, a)

Given a description of the nbhd of a cell c, we may
match the closest pattern:

if rcolour = colour(c) then

distance← (e0 − rh0
)2 + ... + (enc − rhnc

)2

end if

Size of the representation of φ: O(|φ| · nc)

Number of possible transition functions: nc · 12nc · |A|



Truss Interpretation



Plane Trusses

Simple models of struc-

ture

Good approximations of

bridges, towers, etc.

Often form initial design

stage of construction.



Plane Trusses con’t

Consist of beams, joints,

grounds.

Want: stability, ability

to withstand (distribute)

external force.



Evaluation

Let:

{P} = {P1, ..., Pn}T , external forces

{∆} = {∆1, ...,∆n}T , displacements

{F} = {F1, ..., Fm}T , member forces

{F}i = [k]ia[β]i{∆}

where [β]i is the connectivity matrix for the ith member

beam, [k]ia is its stiffness matrix

{∆} = [K]−1{P}



Evaluation con’t

The brunt of the work is in computing [K]−1. This

takes O(m3) (or slightly better, with LU-Decomposition)

If K is non-singular, then our truss is unstable.

Otherwise, we may compute the pressure in each beam,

and compare to material strength.



From Cell Types to Trusses

By considering the upper five directions as “genes”, we

can map between combinations of beams and integers

in {0, ..,32}.

Elongations can serve to lengthen in some given direc-

tion



From Cell Types to Trusses con’t

We also trim useless and redundant beams.



Evolutionary Algorithm



Representation

An organism is represented by its transition function,

φ.

Each rule can be represented by a sequence of integers

in appropriate range:

(c, h1, ..., hnc, a)

φ consists of |φ| such rules.

We can define genetic operators for a list of integers.



Initialization

A listing of uniform random values for a count of cell

types is a bad choice.

Want a distribution, X, that gives E[ncX] ≈ 6

We use a power-law distribution:

Pr[X = i | 0 ≤ i ≤ 12] =
1∑12

j=0 βj
β12−i

where β ≈ 3.6 a good choice for nc = 32



Fitness

• t penalize “trivial” forms

• h reward height

• m penalize materials used

• s reward stability

• b penalizes large bases

• p reward trusses that survive external forces, further

rewarding lower maximum pressure: 20 kN down

and 5 kN right at the highest joint(s), 50 N down

and 50 N left at all other joints.



Fitness con’t

fmat(T ) = t(T ) · h(T ) ·m(T ) · s(T ) · p(T )

fstoch = fmat, save that the external force is applied to

random joints.

fbase(T ) = t(T ) · h(T ) · b(T ) · s(T ) · p(T )



Results of Evolution



Trials

We ran 10 trials for each fitness function, using two

different phenotypic sizes (16 m, 24 m).

Stable trusses capable of supporting the external load

were found in nearly all runs.

Some general trends were seen in runs using the same

fitness functions.

Different fitness functions tended towards different so-

lutions.



Fitness Plots

Plots of fitness

versus generation

for fmat and fbase

functions.



Exemplars for fmat



Exemplars for fstoch



Exemplars for fbase



Phenotypic Continuity

Genetic operators often destructive/impotent: suggests
non-linearity in genotype-phenotype map.

However, some phenotypic continuity can be seen visu-
ally.



Unusual Solutions

Designs often do not resemble solutions that engineers

would choose.



“Seed” Trials

The useSeed parameter causes the first rule of a ran-

domly initialized agent to be:

(1,0, ...,0,“divide”)

This is a loose analogy for the initial cleavage that

affects a zygote.

Designed to reduce proportion of uninteresting organ-

isms in randomly generated populations.



“Seed” Trials Results

We ran 20 runs with useSeed enabled, 20 disabled, with

a phenotypic size of 16 m.

There was a significant decrease in the number of un-

interesting organisms in the initial generation.

There was slightly better performance, by fitness, in the

useSeed enabled trials; Also, a much smaller variance

between runs.



“Seed” Trials Plot



Future Directions



Developmental Environments

The geometry of develop-

mental space can serve as an

environmental constraint

Genomes evolved in some

context can be re-grown in a

different one

The robustness of AE systems

to environmental perturba-

tions may be explored.

To be presented at GECCO

2007.



Comparative Analysis

There are many models of AE in the literature.

AE is essentially the use of dynamical systems as a tool

for design. Highly non-linear, probably unpredictable!

Evolutionary Computation pushes systems towards op-

tima defined by the fitness and representation — largely

development-free.

Through comparative empirical analysis, we can see

the interplay between the two, and see how significant

model-level decisions are.
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