
A Good Number of Forms Fairly Beautiful
An Exploration of Biologically-Inspired Automated Design

Taras Kowaliw

A Thesis
in

The Department
of

Computer Science

Presented in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy
at Concordia University

Montréal, Québec, Canada

September 2007

c©Taras Kowaliw, 2007

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Taras Kowaliw
Entitled: A Good Number of Forms Fairly Beautiful

and submitted in partial fulfilment of the requirements for the degree of:

Doctor of Philosophy (Computer Science)

complies with the regulations of the University and meets the accepted standards with respect
to originality and quality.

Signed by the final examining committee:

Dr. Rajamohan Ganesan (Chair)
Department of Mechanical & Industrial Engineering

Dr. Peter Grogono (Supervisor)

Dr. Nawwaf Kharma (Co-supervisor)

Dr. Sabine Bergler (Examiner)

Dr. Adam Krzyzak (Examiner)

Dr. Kudret Demirli (External-to-Program Examiner),
Department of Mechanical & Industrial Engineering

Dr. Daniel Ashlock (External Examiner)
Department of Mathematics and Statistics,
University of Guelph

Approved by:

Dr. Sudhir Mudur, (Chair of the Department of
Computer Science & Software Engineering)

Approved by:

Dr. Nabil Esmail, (Dean, Faculty of
Engineering & Computer Science)

20

ABSTRACT

“A Good Number of Forms Fairly Beautiful: An Exploration of Biologically-Inspired Automated
Design”
Taras Kowaliw, Doctoral Candidate
Concordia University, 2007

Artificial Embryogeny (AE) can be described as the use of a dynamical system as a mid-step
in a design process; Through emulating Biological Embryogenesis, we hope to reach levels of
complexity and robustness currently impossible. AE is a new field, and suffers from a lack of
standards and meaningful means of evaluation. In this document, we review existing work, dis-
cussing motivations and merits of existing approaches. Throughout, we argue that a viewpoint
which does not regard environment as a primary source of information risks taking a näıve view
of evolution. We argue that “complexity” is vaguely and inconsistently defined, and propose
several novel measures; Perhaps the simplest model of AE, the Terminating Cellular Automaton,
is introduced, and used to compute and contrast our measures. Next, the Deva family of AE al-
gorithms is introduced, a modular Cellular Automaton-like group. A domain of application from
Civil Engineering is chosen as an interpretation of the grown organisms. It is initially shown
that it is possible to use a Deva algorithm to evolve Plane Trusses successfully, this interpre-
tation providing a discipline-independent measure of success. A series of empirical experiments
is undertaken, showing the relative efficacy and effects of several model-level strategies in the
context of the evolution of structural design. Finally, we explore the role of environment as a
constraint on development of structural form. We demonstrate a strong resistance to environ-
mental change by successfully re-growing the organisms in new environments, showing that some
Deva organisms are adding information from the environment to their overall morphology; This
provides an artificial analogue to the re-use of genes which characterizes biological development.

iii

RÉSUMÉ

“A Good Number of Forms Fairly Beautiful: Une exploration de la conception automatisée
inspirée de la biologie”
Taras Kowaliw, candidat au doctorat
Université Concordia, 2007

L’embryogenèse artificielle (AE) concerne l’emploi d’un système dynamique en tant qu’un
pas au mi-chemin dans un processus de conception; en imitant l’embryogenèse biologique, nous
espérons atteindre des niveaux de complexité et de solidité actuellement impossible. L’AE est
un nouveau domaine où il y a un véritable manque de normes et de moyens d’évaluation sig-
nificatifs. Dans ce document, nous faisons le bilan de l’oeuvre actuel, avec une discussion des
motivations et des avantages des approches actuelles. Nous maintenons qu’un point de vue qui
ne considère pas l’environnement comme une source principale d’information risque de prendre
une vue näıve de l’évolution. Nous soutenons que la complexité est définie de manière vague et
incohérente, et nous proposons plusieurs nouvelles mesures. Le Terminating Cellular Automa-
ton, peut-être le modèle le plus simple de l’AE, est introduit et utilisé afin de calculer et de
mettre en contraste nos mesures. Ensuite, la famille Deva d’algorithmes de l’AE est présentée,
un groupe modulaire semblable à l’automate cellulaire. Un domaine d’application du génie civil
est choisit pour l’interpretation des organismes adultes. D’abord, nous montrons qu’il est pos-
sible d’utiliser un algorithme Deva pour l’évolution réussie des treillis, une interpretation qui
fournit une mesure de succès indépendante de la matière. Une série d’expériences empiriques
est réalisée, montrant l’efficacité et les effets relatifs de plusieurs stratégies du niveau du mo-
dle au contexte de l’évolution de la conception structurale. Enfin, nous examinons le rôle de
l’environnement en tant que contrainte du développement de la forme structurale. Avec le
succès des cultures subséquentes dans de nouveaux environnements, nous démontrons une forte
résistance au changement environnemental; cela montre que certains organismes Deva ajoutent
de l’information cueillie de l’environnement à leur morphologie globale. D’où l’analogue artificiel
de la réutilisation des gènes qui charactérise le développement biologique.

iv

ACKNOWLEDGEMENTS

This thesis would not have been possible without the help of many people: First and foremost,
my thanks to my family and to Kara-Anne Fraser, whose constant presence, advice and support
have helped make any of my achievements possible; My thanks to the Department of Computer
Science at Concordia University, and to the Department of Mathematics at the University of
Toronto, for their excellent education and resources; Finally, my gratitude to Jutta Treviranus
and the Adaptive Technology Resource Centre, for their aid and understanding throughout my
studies.

Further, I am indebted to Ramin Sedaghati, for his help in understanding and confirming
correctness of the Civil Engineering portions of this work; to Nicolas Brodu, for valuable dis-
cussions and advice; and to Motria Spolska, Myron Kowaliw, Larissa Kowaliw, and Kara-Anne
Fraser for their help on the draft of this document.

My thanks to Nawwaf Kharma, for continued support and guidance. Much of my under-
standing of the practice of research comes from his advice, and much of my confidence comes
from his continued support.

Finally, my gratitude to Peter Grogono; This certainly for his support and aid, but primarily
for years of interesting discussions of shared interests; My thinking has been deeply influenced
by his, and much of the material in this thesis is derived ultimately from his ideas.

Photo credits:
“Slogor”, by Stephen Notley (http://angryflower.com), page xii
“The Hearn 2” by Charles Bodi (http://ridemypony.com), page 115
All other images c©Taras Kowaliw, 2007.

v

Contents

List of Figures . viii
List of Tables . x

1 Introduction 1

2 Review 5
2.1 Measures of Complexity . 5
2.2 Double-Discrete Dynamical Systems . 7

2.2.1 Cellular Automata . 8
2.2.2 Classification of Cellular Automata . 9
2.2.3 Computation in DDSs? . 10

2.3 Development . 10
2.4 Artificial Embryogeny . 15

2.4.1 Reverse-Engineering EvoDevo . 16
2.4.2 The State of the Applied Art . 17
2.4.3 A Critique of Existing Work . 20
2.4.4 A Critique of a Critique . 21
2.4.5 Complexity and AE . 21

2.5 Static Structures . 23
2.5.1 Truss Stress Analysis . 25
2.5.2 Evolution of Structures . 25

3 A Simple Complexity 27
3.1 The Importance of Environment to Embryogenesis 28
3.2 What Notion of Complexity is Desired? . 29

3.2.1 “Näıve” Organismal Complexity . 29
3.2.2 Genomic Complexity . 30
3.2.3 Functional Complexity . 31

3.3 A Domain of Discourse: TCAs . 32
3.3.1 One-dimensional TCAs . 32
3.3.2 Measures of Complexity on TCAs . 33

3.4 Experiments with One-dimensional TCAs . 33
3.5 Conclusions . 36

4 The Model 38
4.1 Deva Overview . 38

4.1.1 Integral Components . 38
4.1.2 Actions . 39
4.1.3 Transition Functions . 40
4.1.4 Deva Growth . 41
4.1.5 Developmental Environments . 42

4.2 A Variety of Deva Models . 43
4.2.1 Deva 1 Models . 43
4.2.2 Deva 1 Variants . 44

vi

4.2.3 Deva 2 Models . 45
4.2.4 The Deva 3 Model . 45
4.2.5 Deva 4 Models . 46

4.3 Evolution . 48
4.4 Application: Plane Trusses . 48

4.4.1 Representation and Cell Types . 48
4.4.2 Trimming Grown Plane Trusses . 50
4.4.3 Plane Truss Evaluation . 51

5 Deva 1 Experiments 55
5.1 Experimental Set-up . 55
5.2 Data and Analysis . 55

6 Comparative Study 60
6.1 Seed Experiments . 61

6.1.1 Experimental Set-up . 61
6.1.2 Data and Analysis . 61

6.2 Neighbourhood Experiments . 62
6.2.1 Choice of |φ| . 63
6.2.2 Comparative Neighbourhood Experiments 63

6.3 Division Experiments . 68
6.3.1 Choice of |φ| . 68
6.3.2 Division Experiments . 69
6.3.3 Comparison of Division Data . 69

6.4 Gene-based Specialization . 70
6.4.1 Experimental Set-up . 70
6.4.2 Data and Analysis . 71

6.5 Inheritance of Cell Specialization . 72
6.5.1 Experimental Set-up . 72
6.5.2 Data and Analysis . 73

6.6 Summary of Results . 73

7 Environment Experiments 76
7.1 Environment as a Spatial Constraint . 77

7.1.1 Experimental Set-up . 77
7.1.2 Initial Experiments . 77

7.2 Re-use of Genetic Material . 78
7.2.1 Re-growth at Different Sizes . 78
7.2.2 Re-growth in Different Environments . 79
7.2.3 Zelig . 81

7.3 Summary . 83

8 Conclusions 85

A Complexity Addenudum 91

B Explicit Deva Algorithms 93
B.1 General Deva Growth Algorithms . 93

B.1.1 Neighbourhoods . 93
B.1.2 Best Free Location . 93
B.1.3 Deva Growth . 94

B.2 Deva 1 . 96
B.2.1 Deva 1 Transition Function . 96

B.3 Deva 1 Variants . 98
B.3.1 Deva 1.N . 98

vii

B.3.2 Deva 1.Dir . 98
B.3.3 Deva 1.AllWay . 99
B.3.4 Deva 1.Clockwise . 100
B.3.5 Deva 1.Stateless . 100

B.4 Deva 2 . 100
B.4.1 Deva 2.Stateless . 101

B.5 Deva 3 . 102
B.6 Deva 4 . 102

C Truss Analysis 103
C.1 Truss Analysis . 103

C.1.1 Equilibrium Method of Truss Analysis . 104
C.2 Derivation of Equilibrium Method of Plane Truss Analysis 105

C.2.1 Derivation of Axial-Force Deformation Relationships 105
C.2.2 Derivation of Equilibrium Method . 106

D Code Documentation 108
D.1 Terminating Cellular Automata Documentation 108
D.2 Deva Documentation . 109

D.2.1 Usage . 109
D.2.2 Creating a New Experiment . 109

viii

List of Figures

2.1 Boolean network and state transition diagram. 8
2.2 ECA Rule 30 with space-time. 9
2.3 Examples of diversity in multicellular organisms 11
2.4 Levels of evolutionary change. 12
2.5 Example of “duplication and divergence” . 14
2.6 Examples of natural patterns. 15
2.7 Interesting agents from Bluenome Phase One . 18
2.8 Snapshot of several members of a population. 19
2.9 Two phenotypes from the same genome. 19
2.10 Space truss-like construction. 24
2.11 Two plane trusses with illustration of forces. 24

3.1 An echinoderm and a bilateral. 29
3.2 Correlations between complexity measures. 35
3.3 Lines of best fit for H and funcplexity. 35
3.4 Lines of best fit for H and LZW , and LZW and eK. 36
3.5 Two TCAs with low eK and high LZW . 36

4.1 Example of Deva growth. 39
4.2 Example of Deva growth. 39
4.3 Maximal growth of organisms by cell age. 40
4.4 Developmental environments. 42
4.5 Mapping between cell colours and genes. 49
4.6 Example of truss interpretation of cell lattice. 50
4.7 Example of Deva 1 growth, interpreted as truss. 50
4.8 Screen shot of stress analysis of two trusses. 52

5.1 Plot of fitness for Deva 1 fitness trials. 56
5.2 Example population members. 57
5.3 Exemplar organisms from Deva 1 fitness trials . 57
5.4 Examples of unusual organisms. 58
5.5 Organplexity of a Deva 1 organism. 58

6.1 Plot of fitness of Deva 1 useSeed trials. 62
6.2 Plot of fitness versus values of |φ|. 64
6.3 Max and mean agents from neighbourhood runs. 65
6.4 Fitness plot for Deva 1.N and 1.Stateless runs. 65
6.5 Fitness plot for Deva 2 and 2.Stateless runs. 66
6.6 Fitness plot for Deva 1.N, 2, and 3 runs. 66
6.7 Number of rules used by maximum fitness agents. 67
6.8 Plot of fitness versus values of |φ|. 68
6.9 Fitness plot for division runs. 69
6.10 Max and mean agents from division runs. 70
6.11 Fitness plot for gene-based specialization trials. 71

ix

6.12 Number of used rules plot for gene-based specialization trials. 72
6.13 Fitness plot for cell-specialization inheritance trials. 73

7.1 Maximum fitness plot for environment runs. 77
7.2 Examples of trusses evolved in various environments. 78
7.3 Re-growth of an organism with different phenotypic sizes. 79
7.4 Selected statistics from phenotypic re-growth experiments. 79
7.5 Unsuccessful re-growth of agent in different environments. 80
7.6 Selected statistics from environmental re-growth experiments. 80
7.7 Re-growth of Zelig in all environments. 81
7.8 Growth of Zelig. 82
7.9 A visualization of Zelig’s genome. 82
7.10 A detailed description of the growth of Zelig in the thin environment. 83

B.1 Illustration of neighbourhood types. 93
B.2 Example of morphological symmetry . 99

C.1 Illustration of terminology in member-deformation. 105

D.1 Possible Environments for Growth . 109
D.2 Screen shot of visualization tools. 112
D.3 Truss visualization. 113

x

List of Tables

3.1 Patterns which satisfy objectives . 36

4.1 Summary of Deva Models . 47

6.1 Maximum and mean fitness of neighbourhood runs. 65
6.2 Maximum and mean fitness of division runs. 69
6.3 Maximum and mean fitness of gene-based specialization trials. 72
6.4 Maximum and mean fitness of inheritance of specialization trials. 73

7.1 Maximum fitness from re-growth of run.thick trials. 80
7.2 Maximum fitness from re-growth of run.bulb trials. 81

A.1 Correlation values between complexity measures. 91

D.1 Parameters and explanations in file deva.dat. 110
D.2 Fitness functions and associated specification codes. 110
D.3 Types of deva growth and associated specification codes. 110
D.4 Mapping of integer additions to cell properties. 113
D.5 Mapping of integers to actions in action list files. 114

xi

Stephen Notley, http://angryflower.com

Chapter 1

Introduction

From the war of nature, from famine and death, the most exalted object which
we are capable of conceiving, namely, the production of the higher animals, directly
follows. There is grandeur in this view of life, with its several powers, having been
originally breathed into a few forms or into one; and that, whilst this planet has gone
circling on according to the fixed law of gravity, from so simple a beginning endless
forms most beautiful and most wonderful have been, and are being evolved.

Charles Darwin, The Origin of Species

We have certainly never stopped marvelling at the beauty and diversity of Darwin’s “endless
forms most beautiful”, the multicellular organisms; Indeed, after 150 years of constant scientific
progress and understanding, it seems at times that we are not much closer to understanding the
origins of life than was Darwin himself. A much discussed and pursued area of biology today,
colloquially termed “EvoDevo” for Evolutionary Development, seeks to bridge the gap between
the far-better understood fields of Genetics and Ecology; The object of study is Embryogenesis,
the process by which a single egg becomes a multicellular organism. This field is considered
imperative to the understanding of evolution and the diversity of multicellular life, and, as such,
to understanding the ultimate causes of a good portion of all of biology.

Computer Science is a field of study often concerned with the construction of solutions to
mathematical questions. The primary thrust of Computer Science is on the design of algorithms
or on programming, the means of constructing functions which serve our needs. Indeed, a com-
munication of the ACM once declared that the fundamental underlying question of Computer
Science was “What can be (efficiently) automated?”1 There is, however, a second perspective
— this is the viewpoint of mathematicians such as Kolmogorov or Chaitin — which sees com-
putation as compression, and the computable functions as the set of all human-understandable
patterns, or human-understandable relations between sets of data. This suggests a different role
for Computer Scientists, other than that of programming; This suggests the role of a Computer
Scientist as a discoverer of patterns that exist in the larger space of all functions. Or, given
some existing and poorly understood source of pattern in nature, a discoverer of a means of
understanding for that pattern.

1Computing as a discipline, Communications of the ACM, January 1989

1

The information contained in a developed foetus or organism results from several initial
sources, which we will group in the following three categories: the genome of the fertilized egg
or seed, the environment in which the organism grows, and the dynamics of cell reproduction in
this environment. It will be argued that the relevance of the latter two of these categories, the
dynamics and the environment, are often underestimated; That is, both contribute substantially
to pattern formation and the generation of information in the organism. Additionally, it will
be noted that the dynamics of development is generally poorly understood mathematically. We
will review some existing measures of complexity, and propose some novel measures, which may
help in making these notions explicit.

There has been much interesting work in Artificial Embryogeny (AE) in modelling the de-
velopmental process; This both in terms of understanding biology, and in terms of exploiting
the process for the design of useful structure. These systems have shown much success on
both counts, both in simulating the function of biological organisms, and in creating real-world
structures or software, useful by the standards of engineers. We will next define a domain of
application from Structural Engineering; The importance of using a model which comes supplied
with an externally-defined measure of success should be clear in Artificial Life, and we will use
that of Plane Trusses to supply a notion of meaning to our experiments.

AE typically involves the use of a non-linear dynamical system to map between genotype
and phenotype; The unpredictability of dynamical systems is well known, as is the fact that in
any non-linear system, small perturbations may lead to large changes in aggregate behaviour
over time. At the same time, Machine Learning, and Evolutionary Computation in particular,
serve to move a population of agents towards some optimum or attractor. The interplay between
Evolutionary Computation and Dynamical Systems, a key feature of current work in AE, utilizes
two seemingly opposing processes. As such, it is not at all obvious what effect a model-level
perturbation will have on an AE model.

While minimal models (two- or three-colour image generation, for instance) may be sufficient
for generating proof-of-concepts or demonstrating general properties, we suspect that they do
not suffice for the selection of model-level strategies; For the practical application of AE, or
the simulation of biological phenomena, the phenotypic search space is likely to be largely pre-
specified by the chosen domain of application, with little variance in the possible components
and dimensionality of representation. Yet, many existing AE representations grow exponentially
in these two variables, making them intractable choices.

We will utilize our models and domain of application to evaluate model-level decisions in
Artificial Embryogeny empirically. In so doing, we will demonstrate that these decisions, includ-
ing seemingly small and insignificant choices, indeed can sabotage the process of evolution in
terms of optimizing our fitness function. Factors which contribute significantly will be shown to
include the dimensionality of phenotypic space, suggesting that hypothesis which hold true for
AE models in some given domain of application need not hold true at other dimensionalities.

Finally, we will explore the role that environment can play in Artificial Embryogeny. Rather
than control evolution simply through a fitness function, we will impose additional constraints via
choice of environment. In so doing, we will show that our models are capable of adapting to novel
environments, despite having been evolved elsewhere. Indeed, we will discover several simple
agents capable of growing stable trusses in nearly all explored environments; This capability, that

2

of a simple genome to exploit environmental information provided at the time of growth, is an
embodiment of the principle of biological channelling which we will highlight in our discussions
of complexity measures.

3

Chapter 2

Review

2.1 Measures of Complexity

There have been many attempts to define measures of complexity; Here we review several, taken
from both Mathematics and Biology, and discuss their relative strengths and weaknesses. This
is by no means an exhaustive list. Instead, we choose measures that are (a) readily defined in
the space in which AE models operate, and (b) directly relevant to embryogenic growth.

Structural Complexity in organisms is an attempt to define complexity in a fashion that
corresponds with our näıve conception, using the gross number of cells, cell types, organs, etc.
Bell and Moorers, for instance, use the number of types of cell specialization, and show a
correlation with the estimated number of cells in an organism overall. They interpret the results
to indicate a greater capacity for specialization in a cooperative division of labour (as opposed
to competitive division of labour, the number of cell types in a population). Interestingly, they
find that major groupings of organisms differ in complexity by size: animals have more cell types
per total cell number than plants, for instance [BM97].

A similar notion is that of McShae’s Functional Complexity, which aims to measure the
complexity of an organism by the number of functions it performs. Since an enumeration of
functions is impossible directly, there have been attempts to use “parts as proxy”; That is, if
one makes the assumption that parts in an organism exist because they play a functional role,
then the number of parts forms a rough estimate for the number of functions which an organism
carries out. Parts is a vague term, but could include the number of cells, number of organs,
morphological categories, etc. [McS00].

Shannon Entropy (sometimes Shannon Information) was developed by Shannon as a means
of estimating the information content of a transmitted symbol [Sha48]; It is quite similar to
notions of entropy from thermodynamics, hence the title. Shannon entropy has since become
a common measure of “complexity”, often used in cryptography and communication theory,
and also at times as a means of measuring self-organization. Shannon entropy is maximized
for random sources and normal numbers1, and low Shannon entropy is an indication of easily
compressible data.

Let X be a random variable taking values on alphabet Σ, and p(x) = Pr(X = x). The

1A normal number is one in which in the expansion every digit occurs with equal frequency.

5

Shannon entropy function is defined as

H(X) = E[I(X)] = −
∑
x∈X

p(x) log p(x) (2.1)

where I(X) is the self-information, or the information contributed by a single symbol. Making
the assumption that 0 log 0 = 0, H assumes values on the range [0, log |Σ|].

Kolmorogov Complexity, also known as the Algorithmic Information Content, was developed
independently by Kolmogorov, Chaitin and Solomonoff [GV06]. The measure is intended to
capture the notion of incompressibility of data, where we consider every knowable means of
compression; This is done by considering a Universal Turing Machine, U , which, by the Church-
Turing thesis, implements every possible algorithmic technique. The particular choice of U is
unimportant (from the perspective of mathematics, at least) since each can implement every
other in constant time. This leads to our definition:

KU (x) = min
|p|
{p | p `U x}

where x is the data in question, p is a program, and p `U x means the execution of program p

by machine U produces output x. Hence, we seek the shortest possible program that computes
the data in question.

For both periodic and random strings (that is, strings generated by an i.i.d. variable), it
is known that Shannon entropy and Kolmogorov complexity agree up to a constant [LV93].
Moreover, it is known that there is a link between entropy and the expectation of Kolmogorov
complexity for a distribution [GV06]. For these reasons, H and K are often linked — note, how-
ever, that these linkages do not imply any particular relation in the general case, and especially
not if we restrict our attention to finite data. A serious drawback of Kolmogorov complexity
is that it is known to be uncomputable [Cha98], and for that reason is typically rejected as a
measure without much philosophical consideration.

While Kolmogorov Complexity may be known to be uncomputable, often the attempt is
made to use compression algorithms as means of measuring the meaningful content of a pattern,
having removed the obvious regularities and redundancies. Lempel-Ziv compression is a popular
algorithm for the lossless compression of binary data used, for instance, in the GIF image format.
The original concept was proposed by Lempel and Ziv [ZL78], and later utilized in the specific
LZW algorithm by Welch [Wel84].

The LZW algorithm works by creating dictionaries of necessary symbols from the base al-
phabet; Given a sequence in order, the system will create dictionary entries for one- and two-
character sequences. As the process continues, successively longer sequences of symbols will be
created — at each stage, the dictionary code for the best new symbol will be output, until the
entire message has been codified. Hence, LZW is a frequency-based algorithm which removes
repeated sequences. The particular LZ algorithm LZW is not optimal, in fact, the precursor
LZ78 created better codes, but LZW is significantly faster2. We can construct a complexity

2Note that LZ algorithms are often implemented with a maximum code size, skewing their compression rates
for large data.

6

measure from the LZW compression as follows:

LZW (x) = |x′| (2.2)

where x′ is the lossless compression of string x by the LZW algorithm.
Compression algorithms, especially Lempel-Ziv algorithms, have been used as an approxi-

mation of Kolmogorov complexity on several occasions. This usage, in any individual case, is
likely a poor choice. While LZW may be a good measure of regularities based on frequency,
Kolmogorov complexity is far more robust than this; Although it has been shown to agree with
Kolmogorov complexity is cases of high regularity and high randomness, it can easily be shown
to disagree with K on simple and fundamental examples3.

Often, we would like to include a notion of the computational complexity required to compute
a pattern; While computational complexity is a useful notion for the discussion of algorithms,
it fails for the discussion of patterns, since one can always design a program that outputs some
given data in time O(1). One solution to this is the use of Bennet’s Logical Depth [Ben86]; In
this definition, the complexity of a given piece of data is related to the running time required
by the shortest algorithm which computes it. That is, given a universal Turing machine U and
data x, we define the logical depth, D, to be:

DU (x) = τU (p∗), where p∗ `U x (2.3)

where τ is a measure of execution time, and p∗ is a shortest-length program computing x.
Note that by the criterion of logical depth, both highly ordered and random strings are not

complex — since they can be computed with simple ‘print x’ statements. Numbers such as π or
e, on the other hand, are considered complex, since it takes effort to print their digit expansions.

Another interesting approach comes from Adami; That of Physical Complexity, related di-
rectly to an organism’s environment. Adami sets out to measure the amount of information that
a given genome (or population of genomes) has about the environment; Ideally, he desires the
shared Kolmogorov complexity between a sequence and a description of the environment. Since
it is known that Shannon Entropy is related to the expectation of Kolmogorov complexity, it
may be used as an approximation for K for populations. The measure may be approximated by
computing the entropies of the values at single-sites of the genome. Adami states his suspicion
that biological evolution will tend towards greater complexity in time, and provides a digital ex-
periment as illustration [Ada02]. Unfortunately, Adami’s simple model aside, the Kolmogorov
complexity of the environment is likely more difficult to describe than that of an organism’s
genome, if for only the simple reason of relative size.

2.2 Double-Discrete Dynamical Systems

A dynamical system is a system that evolves through a parameter, usually interpreted as time.
A double-discrete dynamical system (DDS) occupies a discrete universe; that is, a universe of

3This is easily seen by considering the compression of successively longer sequences of the expansion of a
computable but normal number (one which is normal in every base is known to exist [BF02]), which will continue
to increase in size, in contrast with its near-constant Kolmogorov complexity.

7

Figure 2.1: A boolean network (inset) along with state transition diagram; Arrows indicate movement
from a state to its successor under an application of the (implicit) transition function.

isolated points, where a point may usually be denoted by a list of integers4. Each point in the
universe corresponds to a state. We express states by time, as in St−1, St, St+1, where a state S

is a representation of the state of our universe of discourse. Movement through states is usually
represented via a transition function, Φ, such that ΦSt = St+1; The set of all possible states is
known as the state space, and any particular representation thereof as the phase space.

A DDS may be displayed as a directed graph, where the transition function defines connec-
tions between nodes (states); This state transition diagram allows for some useful definitions:
An attractor is a node or cycle from whence there is no exit; A basin of attraction are all nodes
which lead into an attractor; A garden of eden state is one that has no predecessor. Figure 2.1
shows the state transition diagram, with connectivity, for a Boolean Network.

2.2.1 Cellular Automata

There exist many models of DDSs; Perhaps the most common of these is the Cellular Automaton,
introduced by Stanislaw Ulam and John von Neumann in the 1960s [vNB66]. Cellular Automata
(CAs) were an attempt to describe a discrete counterpart for continuous dynamical systems. For
an introduction to CAs, see Ilachinski’s text [Ila01]. They are often used as simple models in
physics, as they are simple enough to allow for convenient calculation of various measures.
Increasingly, CAs are also used as models of biological phenomena, including as models of
pattern formation [DD05] [CDF+01].

A cellular automaton is a lattice of “cells”, each of a particular cell type. Each cell may
accept information from its neighbours, and decide what its state will be in the next time step;
Hence, every cell in a CA may be viewed as an agent which acts on the basis of local information.

Formally, a CA may be described as follows:

• An alphabet of cell types (or ”colours”), Σ; usually Σ = {0, ..., k − 1}
• A (possibly infinite) lattice of cells, written (in the one-dimensional case)

S = ..., si−1, si, si+1, ...

• A neighbourhood of cells, µi consisting of a set of cells from the lattice; In one dimension,
a radius r is specified, and µi = {si−r, ..., si+r}.

4I use the term double-discrete to distinguish from systems which are discrete in time, but continuous in
space, such as Iterated Function Systems.

8

Figure 2.2: A representation of ECA rule 30 at the top, and the space-time diagram of its application
to a finite lattice below.

• A transition function, φ : Σn → Σ which maps from any possible neighbourhood of cells
to a new cell type.

Hence, if we define Φ be the parallel application of φ to every site in the lattice, and S to be
the entire lattice at time t, we may write the evolution of a CA as St+1 = ΦSt. We refer to the
application of time to the lattice as evolution (or growth or development5).

In one dimension, the space of all CAs is specified by the size of the neighbourhood, r, and
the size of the alphabet, k; The total number of neighbourhoods is then k(2r+1), and the total
number of CAs is then kk

(2r+1)
. The Elementary Cellular Automata, or ECA, are all CAs with

k = 2 and r = 1, and are numbered from 0 to 255, by reading off the transition function value in
the order defined by the domain; Neighbourhoods, however, become significantly more complex
in higher dimensions. The application of a particular ECA, rule 30, is shown in Figure 2.2.

2.2.2 Classification of Cellular Automata

Wolfram [Wol83] provided an attempt at classifying the various types of CA:

• Class One: evolution leads to a homogeneous state.

• Class Two: evolution leads to a set of stable or periodic structures that are separated and
simple.

• Class Three: evolution leads to a chaotic pattern.

• Class Four: evolution leads to complex structures, sometimes long-lived.

Perhaps a more interesting way to view class three is to see that any particular site will rely on
progressively more distant initial sites; A very similar classification was used to describe another
model of DDSs, Random Boolean Networks, including an “edge of chaos”, analogous to class
four [Kau00]. This classification is similar to the classification of continuous dynamical systems,
except that the continuous version does not include an analogue of discrete Class Four [Sha81].

Unfortunately, despite the intuitive appeal of the CA classes, there does not appear to be
any way to distinguish between the classes besides (the possibly flawed) visual inspection. To
begin with, it is undecidable which class a given CA lives in, even between class one and class
two [CY88]. Additionally, many attempts to re-formulate the CA classes have also proven
uncomputable or otherwise problematic; These include techniques based on the decidability
of achieving exemplar states [CY88], ability to grow patterns [BCFV95], fractal properties of

5Note that this terminology is likely to cause confusion in this document, given that we also discuss evolution
and development proper; We leave it to context to disambiguate.

9

states [Wil84], and the extraction of attractors from time-limit sets [BKM97]. Shalizi refers
to Wolfram’s Classes (in the context of measuring complexity) as one of his zombie ideas —
“ideas that should be dead but continue to eat brains”; Still, the division is intuitive, and many
researchers attempt to classify CAs through empirical means. This includes Wuensche [Wue99]
and Olivera et al [OOO01].

2.2.3 Computation in DDSs?

It has been repeatedly shown that Cellular Automata are a model for computation — this has
been accomplished by the recreation of several known models of computation, including the
general Turing Machine, in CAs; This work is reviewed by Mitchell [Mit98]. However, it is
readily apparent that a functioning CA does not, in any immediately recognizable way, organize
itself to replicate a known model of computation when “solving” problems; When a CA is found
capable of solving a particular problem, the result is what we have termed elsewhere a “useful
mess”. The constructive dynamics of CAs are buried, and difficult to bring forth.

However, there is significant, although inconclusive, evidence to suggest that properties of
known computational systems exist in Wolfram’s classes, and hence exist in a “natural” division
of the space of CAs. For example, Wolfram states his suspicion that all Class Four CAs are
universal [Wol02]. Cook, in fact, has shown that this is true for ECA rule 110 [Coo04]. More
interestingly, Li has put forward the thesis that the classes are closely linked to the Chomsky
Hierarchy of Languages, that:

• Class One and Two CAs form regular languages

• Class Three CAs (appear to) form context-sensitive languages

• Class Four CAs (appear to) form unrestricted languages

He does so by comparing the power spectra of weighted minimum state-transition graphs for
the ECAs, then comparing this statistically to the state complexity of the various languages
[Li88]. Unfortunately, though tantalizing, both of these suspicions are far from proof: Firstly,
it is difficult to claim that ECAs serve as an exemplar for the trends of CAs at large; Secondly,
statistical similarity is far from proof; And finally, there does not exist any strictly formal
characterization of CAs to compare to, just visual suspicions.

Hence, there exists no formal definition of Wolfram’s CA classes, although there are several
interesting correlations for ECAs; What we may be looking for instead is definitions thereof.
Although similarly uncomputable, exploration of the relations between “natural” classes of CAs
and formal languages may serve to help explain the constructive tendencies of DDSs in general.

2.3 Development

It is generally agreed that natural selection is the basis of the variety of multicellular life; This
evaluation is based primarily on tremendous fossil evidence, but also increasingly on genetic
analysis6. This is a most astonishing fact, that unselected properties of eukaryotes, along with
natural selection, can give rise to the remarkable diversity of form and behaviour seen today.

6A comprehensive catalogue of the history of (primarily) multicellular life, along with discussion of supporting
evidence, may be found in Dawkin’s recent text [Daw04].

10

Figure 2.3: Perfunctory inclusion of some examples of the diversity of multicellular organisms. (Photos
taken at the Natural History Museum, London, U.K.)

However, precisely how the genetic search associated with natural selection gives rise to the
phenotypic patterns seen in nature is a poorly understood phenomenon, and the subject of a
rapidly expanding field of Biology, Evolutionary Development.

A näıve view of the origins of multicellular life may be summarized by a position of Alfred
Russel Wallace, written in 18707 [Wal70]:

Universal variability — small in amount but in every direction, ever fluctuating
about a mean condition until made to advance in a given direction by ‘selection’,
natural or artificial — is the simple basis for the indefinite modification of the forms
of life.

What Wallace is envisioning is, translated into modern terms, a view of phenotypic space as
divided along a large number of axis, where points vary along some distribution. Organisms’
traits vary along each axis independently, and through this random motion, evolution occurs.
This view is quite close to what is practised currently in Evolutionary Computation, say, through
a Genetic Algorithm performing an optimization on a set of real or boolean genetic variables.

Approximately one billion years ago, Eucaryotic cells began to work in tandem; One popular
theory states that cells began to form rigid structures reaching upwards; This would allow
the cells near the top to be carried by a stream to ever further locations, allowing for the
creation of far-away colonies of genetically identical cells. This despite limiting the chances
of survival of the cells near the bottom or middle of the structure; That is, the theory states
that the first multicellular organisms were composed of identical cells which increased their
genetic fitness by collaborating to form spores. The tremendous complexity of multicellular life
— that is, morphology, specialization, and all other functions — followed from such a simple
collaboration, benefitting genes, not cells [Fen02]. An important note may be made about this
view of multicellular beginnings: it is nearly entirely dominated by physics and environment,
and operates opportunistically on those; That is, the genetic component is almost certainly
an accidental creation of a cell whose properties supported upwards growth and stability...
everything else was the dynamics of the environment.

DNA is more of a program than a catalogue; This is largely evident from simply comparing
the relative size of DNA to the number of cells in a human body, or approximately 3 billion
base pairs versus 75 and 100 trillion cells. Indeed, there is no obvious relation between the size
of DNA and the apparent complexity of a generated organism; For example, the onion genome
is more than five times the length of a human’s.

7Turns out that scarecrows are easier to find in century-old literature than in today’s.

11

Figure 2.4: Arthur’s logical relationships between the levels of evolutionary change.

Indeed, Carroll et al point out we have much more evidence than that; He notes that only
a tiny fraction of our DNA, approximately 1.5 percent, codes for the approximately 25000
proteins found in our bodies. An additional 3 percent, or approximately 100 million bits, is
regulatory — that is, it determines when, where and how much of the various proteins are
made. The remainder is “junk”, or DNA not believed to influence the development of the
organism at all8. Hence, most functional DNA is regulatory, DNA which does not specify
specific protein construction. Instead, regulatory DNA (somehow) determines when, where and
how much of the protein are made; “Regulatory DNA is organized into fantastic little devices that
integrate information about position in the embryo and the time of development ... ultimately
transformed into pieces of anatomy that made up animal forms. This regulatory DNA contains
the instructions for building anatomy, and evolutionary changes within this regulatory DNA
lead to the diversity of form” [CGW05].

Müller [M0̈3] notes that any theory of development will need to account for “(1) the gen-
eration of initial parts; (2) the fixation of such parts in lineage-specific combinations; (3) the
modification of parts; (4) the loss of parts; (5) the reappearance of lost parts; and (6) the addi-
tion of new parts”. He goes on to note that proximate and ultimate causes will eventually need
to be specified as a result as well9. Arthur [Art04] provides a break-down of the mechanisms
believed necessary and sufficient for the emergence of those phenomena; He terms these the
steps in “Developmental Reprogramming”10:

• Heterochrony: Different timing in the expression of genes.

• Heterotopy: Occurrence of different gene expression in different areas of space.

• Heterotypy: The amount of product being made by a gene, independent of time and place.

• Heterometry: A change in the nature of the produced gene expression.

Arthur considers this part of a larger picture of evolution, one which provides explanation
for all the “natural levels” of evolutionary action; Mutation at the gene level, developmental
reprogramming at the organism level, and selection at the population level (See Figure 2.4 for
a schematic).

It is our belief that in Arthur’s model the difference between “explanation” as understood
by Computer Scientists and Biologists will be more clear; It seems likely that there are entire
worlds of undiscovered computational theory between the models given above and mathematical
explanation of developmental phenomena.

8This information is slightly out of date: recent research has suggested that “junk” may play some role in
development after all; Regardless, Carroll’s point still holds, as the magnitudes of numbers discussed increases
only slightly (by far less than a factor of 10).

9Note that the informality of terms, such as “parts” and “precursor organs”, seems to be common in devel-
opmental literature; I believe this to be a limitation of the precision of current language and understanding.

10Rephrased for brevity.

12

The role of environment should not be underemphasized in this discussion; Development is
not possible unless embodied in some environment. There is, however, significant disagreement
on how much role environment plays in embryogenesis. Many phenotypic features, for example,
can be influenced in a lab either genetically or environmentally. For example: Waddington
showed that the introduction of ether vapour to drosophila eggs can induce an effect otherwise
caused by the biothorax mutation; An increase in temperature will lead to an increase in the
size of “eye spots” on African moths, also known to be controlled genetically as well. Arthur
terms these equivalences between environmental and genetic factors as phenotypic plasticity
[Art04]. Certainly, no biologist denies the role of environment in shaping the development of
an organism. However, these authors have significant doubt as to its ability to add structural
information to an organism beyond simply canalizing possibilities.

The primary source of näıvité in Wallace’s quotation, however, we have yet to detail; The view
of development as a program, rather than as a catalogue of locations on a hugely-dimensional
space, trivializes a canalization; This canalization is often termed “bias” by biologists, and re-
flects the interdependence of genetic “boxes”, and the effects brought on by the environment.
This is perhaps most easily seen by considering the evolution of the phenotypic qualities of
animals’ legs; It is not correct to say that the length of animal’s legs are independent of each
other, since the same genetic boxes control the determination of that factor. Similarly, it is not
correct to say that animal’s legs are all the same length, since genes may effect that property
in some locations and not others, as in many animals with different lengths of fore and aft legs.
This quality, often noted, is termed “modularity enhancing evolution”, where modules are con-
sidered quasi-autonomous parts of the developmental system. Perhaps most interestingly is the
occurrence of these modules between species — as is the case with the hindlegs of grasshoppers
and moths — where homologous phenotypes (coding for hind legs) are shared, despite the gross
enlargement in the grasshopper’s case [Art04].

A commonly seen example of homologous phenotypes is seen in the phenomena termed “du-
plication and divergence”; This is the occurrence of many similar structures occurring repeatedly
with slight divergence in form between occurrences, such as the digits of a hand or centipedes’
legs (see Figure 2.5 for an example). Genetically, these are beginning to be understood; For
example, the patterning of the antiposterior axis in animals appears controlled by Hox genes,
believed to come from a single initial Hox gene early in genetic history. The Hox genes are
believed responsible for the control over these modules (i.e. a regulatory gene), controlling the
particular patterns and frequency of their occurrence over the embryo. As usual, however, we
understand the phenomena significantly less well than could be desired - it is unexplained why
certain species which appear to have less antoposterior patterning have much more Hox gene
than do, say, humans — fish, for example, have double the number [Art04].

It is often said that the apparent complexity of developed organisms comes from genetics and
the environment; To this, most evolutionary developmentalists would, in our opinion, object; It
seems quite clear that significant amounts of this apparent complexity results from the dynamics
of cell growth as specified by both environment and genome; Additionally, that these dynamics
are not only influenced by environment, but also show remarkable resistance to environmental
changes at times as well; This is evidenced by the re-use of genetic boxes in differing species.
Hence, a third factor is required: that which Arthur terms “developmental drives and con-

13

Figure 2.5: Example of “duplication and divergence” in the bone structure of a snake. (Photo taken at
the Natural History Museum, London, U.K.)

straints”. Many of these drives and constraints appear across environments and species, leading
to the belief that they may be studied and understood in a general and abstract way [Art04].
Indeed, as much as environment and genetics are factors affecting development, there exists
times where development seems impervious to their influence — for example, if one activates
the gene named tangled1 in the maize leaf primordia, one sees a highly irregular arrangement
of cells, quite disruptive of the usual symmetric and structured order of the tissue; Regardless,
the overall shape of the leaf will be unaffected, that is, the constituted organ will be unaffected
by a large change to the constituent tissue [LD03]. We will discuss this matter further, in the
context of artificial development, in section 3.1.

Finally, it should be noted that although in animals there is usually a clear distinction
between developmental and adult life (egg hatching, birth, etc.), developmental dynamics never
completely end. For example, Bissell et al stress the continuing importance of environment
and dynamics in multicellularity; “It may be that cells never lose an intrinsic ability to morph
from one cell type to another, and that they maintain a stable phenotype by integrating cues
from the extra- and intercellular milieu. Indeed, there is also ample evidence to support the
notion that, for a cell to continue functioning properly in a tissue-specific way, it must receive
continuous signals to prevent growth or apoptosis and to maintain an appropriate structure and
differentiation state.” The authors go on to question the importance of mutations relative to
microenvironment in the determination of an organism from a genome [BMRT03]. This property
of developing systems is responsible for features such as self-repair and maintenance. Further, in
some cases, such as the brain and its continual creation of new neural connections, development
for an organism may never be viewed as complete.

Development is sometimes referred to as “natural computation” [CDF+01]. This is a näıve
usage of the term, and likely refers to the process of self-organization also seen in visual repre-
sentations of models of computation. That some models of computation easily produce patterns
which resemble those found in nature (both biological and physical) is, however, a striking fact,
and likely a motivation behind much current research.

14

Figure 2.6: Examples of natural patterns easily modelled by computational systems. (left to right):
Giant ammonite; Mesolite, a crystal form found in igneous rocks; Zebra stripes; Hebrew volute, one
of many shells displaying CA-like patterning. (Photos taken at the Natural History Museum, London,
U.K.)

2.4 Artificial Embryogeny

There is significant interest at present in the use of development in automated design. Ar-
tificial Embryogeny (AE)11 is a sub-field Evolutionary Computation concerned with biasing
search through computation-like processes. In short, AE consists of the use of a non-linear
dynamical system to map from representation to organism, inspired by, but not necessarily re-
sembling, the mapping from genotype to phenotype in nature. There does not appear to be
any accepted crisp definition; Indeed, the “Generative and Developmental Systems” track at
the world’s largest Evolutionary Computation conference accepts papers that deal with “the
use, construction or evolution of genotype-phenotype mappings that involve either re-writing,
iteration, time, or environmental interaction”12. Examples of AE in the literature include the
use of: L-Systems, Cellular Automata, Morphogenic gradients, various models of Genetic Reg-
ulatory Networks, Multi-agent systems, and others (examples follow). The process of mapping
from genotype to phenotype is often described as “pattern formation”13, “development”, “gen-
eration”, or (confusingly) in the case of automata, “evolution”.

Perhaps an appropriate distinction between developmental and non-developmental algo-
rithms may be derived from Section 2.1; That, under some appropriate definition of complexity,
a developmental algorithm has no relationship between the complexity of the genotype relative
to the complexity of the phenotype, that the complexity of the phenotype is instead based on
the environment, through constraining space or through provision of building materials.

Regardless, for now we shall refer to any system utilizing a non-linear dynamical system to
map to a distinct phenotype as an AE model. When convenient, we shall refer to the space
of genotypes as g ∈ G, and the space of phenotypes as p ∈ P , with the embryogenic mapping
φ : G→ P . A particular phenotype p will be a configuration of the developmental environment
E, where E is typically a lattice, and p a specification of cell types on that lattice.

The first computational models of embryogenesis include chemical diffusion work by Turing
[Tur52] and work with simple automata by Lindenmayer [Lin68]. Perhaps the best known
models, however, are exceedingly simple proofs of concept using recursive systems: These include

11Also known as “Artificial Ontogeny”, “Computational Development” and “Generative” or “Developmental
Systems”. We choose AE for purely aesthetic reasons, and hope that by being stubborn we can help create a
standard. A taxonomy has also recently been proposed [SM03], although we will not utilize it here.

12From the GECCO-2007 website, description of track with organizers J. Miller, S. Kumar and K. Stanley,
http://www.sigevo.org/gecco-2007

13Note that the term “pattern formation” is often used to describe strictly self-organizing phenomena
[CDF+01]. We opt for the more general definition of simple growth and specialization.

15

Dawkins’ BioMorphs, a simple user-guided evolutionary strategy that controlls the development
of stick-based trees [Daw96]; A more impressive but similar example was the three dimensional
morphologies developed by Sims as interactive electronic art [Sim99].

Much research revolves around the attempt to reverse-engineer Evo Devo, or to create “plau-
sible” models of embryogeny. Other researchers attempt to exploit useful properties of AE in
order to find solutions to engineering problems, or to develop better techniques for doing so.
The following sections explore such models, divided by the aforementioned distinction.

2.4.1 Reverse-Engineering EvoDevo

Biologists refer to the (not entirely understood) interplay between genes and protein expression
as a Genetic Regulatory Network — understanding these GRNs is considered key to under-
standing cellular differentiation. Many models exist to attempt to model GRNs in hopes of the
emergence of existing phenomena — of current interest is modelling the Hox gene, and other
regulatory mechanisms, believed responsible for many familiar developmental patterns.

One of the first proposed models of GRNs was Random Boolean Networks, proposed by
Kauffman; These have quickly become a standard model for Discrete Dynamics in general, and
have been studied extensively for their statistical properties [Kau00]. An early example of their
use is by Delleart, who attempted to create a “biologically defensible” model of development.
That is, a model which encompassed all relevant factors from biological development in realistic
ways. Delleart’s model consisted of a blastula of neutral cells which, after a pre-programmed
symmetry-breaking, used boolean networks to develop an agent. After pre-seeding a GA with a
hand-designed genome, agents evolved capable of performing simple locomotive tasks [DB96].

Others have used L-Systems, especially to model the growth of plants. This includes the
attempt to model plant growth by Prusinkiewicz et al, who have recently successfully re-created
phenomena including meristems, branching, tropism, amongst many others [PL90], [PRL06].

Kumar and Bentley present a system called the Evolutionary Development System (EDS);
This software is designed to encode the primary features of biological development into a system
capable of running detailed experiments. The system consists of pre-programmed concepts
of proteins, cells, cytoplasm, genes, etc., and is intended to model gene expression with cis-
regulatory regions. The functionality of the system is largely controlled by the interaction
between existence of proteins and the genome, through the following mechanisms: Rate of
Synthesis; Rate of Decay; The Coefficient of Diffusion; Interaction Strength; And the Protein
Type. Hence, proteins diffuse throughout the system according to a differential equation, then
influence the genomes of nearby cells in the creation of new proteins. The genes code for
individual proteins, and expression rates are controlled by models of the cis-regions. These
actions are undertaken by cells, each of which may be viewed as an autonomous agent.The EDS
has been used for experiments involving assessing the abilities of the system, and has been shown
to be capable of mimicking GRNs within cells, and some ability to grow embryos of particular
shapes [KB03].

A more detailed and physically motivated model is provided by Eggenberger, whose model is
similar to the EDS model described above, but includes significant modelling of the environment
in which the cells grow as well, including the force of cells on each other. Eggenberger creates
a good model of cell adhesion, and hence describes another physically-bound canalization of

16

development. Through this, he creates models of the growth of three-dimensional structures,
including invagination [Hot97], [Hot03].

2.4.2 The State of the Applied Art

Most relevant to our current interest are cases where Artificial Embryogeny has been applied
to the design of solutions to problems from engineering and related fields. AE possess several
attractive properties which imply their potential use in situations where direct encoding might be
impossible or intractable. AE techniques are believed to be capable of exploiting a canalization
of development, allowing for the design of organisms too large for design by bijective encodings
[KGK04], [HM06]. AE is believed to be a mechanism by which large complex systems may
maintain themselves, executing self-repair following damage [Mil04]. AE allows for significant
environmental influence on the development of organisms, allowing for the same representations
to be used in the development of several different organisms [KGK04]. Finally, it has been
suggested that AE growth might be used to generate not only the final organism, but also a
contructive map, detailing a plan for the assembly of the final design [RP04].

Eggenberger Hotz et al have used development to grow neural network architectures of
impressive size and complexity, capable of controlling a robot arm intelligently [HGP03].

Sekanina and Bidlo used evolution and a developmental algorithm to evolve sorting networks
[SB05]; They began with a small, pre-designed sorting network, termed an embryo, and a genome
(and constructor) — the genome was a linear list of instructions which copied or modified
elements of the network; Through this developmental scheme, they were able to create a series
of ever-larger working sorting networks reasonably independent of genome length.

Stoy and Nagpal use a Cellular-Automata-like technique to allow an undifferentiated mass
of components to self-organize into a pre-determined shape; They have recently described the
reconstruction of a CAD 3D model of a plane from an arbitrary configuration of (the correct
number of) atomic components [SN04b]. There is some question of whether this could be con-
sidered Computational Development by the above criteria, since the action of the algorithm
reconstructs a compressed pattern implicitly contained in the Cellular Automaton-like represen-
tation.

Often, the stated goal of such research is self-repair (as in [Mil04], [SN04a]), and occasion-
ally it is hoped that applications may lead to biological understanding ([KB03]); However, the
primary motivation found in nearly all applications of AE is scale-free design, where genotypic
specification is mapped via developmental process and environmental factors to arbitrarily large
phenotypes. The applications above, and many others, have shown that this is possible in a
wide array of micro-worlds; Indeed, it is easy to see the potential for application in: Software
engineering, as is explored by Miller [Mil04]; Circuit design, as is demonstrated by Sekanina and
Bidlo [SB05]; Or robotic self-organization, as in the work of Stoy and Nagpal [SN04b].

There exists another field of application as well, less standard than the engineering-problem
approaches above; This involves the growth of organisms for the purpose of commercial or
fine art; Indeed, Sims’ primary goal was purely artistic, an exploration of the space between
an audience and an installation. Additional work has been made, including the modelling of
plants, using principles of Computational Development. This includes the modelling of plant
growth for the purpose of simulated graphics, accomplished through several means: L-Systems

17

Figure 2.7: Interesting agents from Bluenome Phase One

were developed early on specifically for this purpose [PL90], and more recent work uses a more
biologically informed model of genotype-phenotype mapping [Coa97], [GMS03].

There are two existing models of embryogenesis closely related to Cellular Automata. In
Basanta’s model, EmbryoCA, a single seed cell is placed in the centre of a two-dimensional grid,
with successive growth controlled by a modified two-dimensional CA. Basanta et al demonstrate
the ability of their model to grow simple geometric shapes [BMBH04]. A second example is the
work of Kowaliw et al, Bluenome, described in detail and critiqued below.

Bluenome

The following is a description of the author’s previous work [KGK04]; A more detailed description
may be found in the earlier Master’s Thesis [Kow03]. Bluenome is a model of AE, similar to
Cellular Automata; Indeed, generally speaking, Bluenome may be viewed as a subspace of
the space of CAs, although we will utilize metaphoric language from biology more often than
the language of automata. Although Bluenome is a better model of biological phenomena than
general CAs, it should not be viewed as a model with any level of detail or predictability; At best,
Bluenome should be viewed as an abstract model of embryogenesis which takes differentiation
as a pre-programmed given. Our interest in this particular model stems from a suspicion that
the sort of canalization imposed by biological constraints will lead to a more evolvable and
controllable model of dynamics than CAs; Indeed, two phases of experiments were undertaken
to attempt to show precisely that.

The Bluenome Phase One experiments were designed to demonstrate the evolvability of the
Bluenome model. Simple rectangular environments were designed, system parameters for the
number of cell types and length of transition function were set, and agents were allowed to grow
without bound (until the environment was filled); Various experiments utilized different fitness
functions, working towards the demonstration of reliable increase in fitness (or lack thereof).
Figure 2.7 shows some agents found throughout all runs; These images show that näıve com-
plexity, symmetry and lack of symmetry, and visually impressive designs are possible.

Figure 2.8 shows an example of several members of a population of agents generated through
the “complexity” measure after approximately 100 evolutionary time steps. A visual continuity
may certainly be seen between them, not only by the cell types included, but by the propensity
to grow “branches”, and the almost fractal boundaries with the empty (white) cells.

There were also several axes shown to be (at least) difficult to evolve; These included entropy,
where organisms resembling “pure noise” were selected for; And self-termination, or organisms
which would grow to some size then stop without external influence.

18

Figure 2.8: Snapshot of several members of a population.

Figure 2.9: Two “Tarasanoids” regrown from the same genotype.

In Phase Two, vastly simplified animal cells were defined, and embodied in a two-dimensional
world containing a variety of distributions of “food”. The Bluenome model was used to develop
agents adept at surviving in this world; That is, conglomerations of the cells were grown through
the Bluenome algorithm, provided with some initial amount of “food”, then were released into
a world. The fitness of an agent was the sum of the survival times of the cells — through
this fitness function, agents were found able to sense, approach, absorb and distribute food
throughout their bodies.

Several exciting results were found through experimentation with these “Tarasanoids”. This
included the comparison between the growth of agents using the Bluenome technique and a bijec-
tive technique; As expected, there was a point at which the phenotypic size caused the bijective
technique to “bog down”, that is, fail to improve with time, while the Bluenome technique did
show additional improvement. Additionally, several recognizable high-level strategies did emerge
from evolution, and were informally catalogued by function; Finally, it was informally demon-
strated that genotypes useful at one level of phenotypic complexity were also useful at other
phenotypic complexities, relative to fitness evaluation (See Figure 2.9 for a visual example).

The Bluenome experiments have several directions for possible improvement; The shortcom-
ing of the Phase One experiments was in a lack of “meaning” of the axis of evolution — naive
definitions of complexity, entropy and tissues may serve as a proof of concept, but do not read-
ily extend beyond this role. Phase Two made steps towards correcting this. In choosing an
application in which it seemed likely that Bluenome would be effective, a biologically-inspired
application was chosen; Additionally, computational constraints demanded that the world also
be highly simplified — the result, unfortunately, was a system too simple for biologists, too
biologically-minded for practical use.

19

2.4.3 A Critique of Existing Work

There are, in our opinion, two areas in which current work in AE needs improvement: The
first of these, in analysis, involves the level of explanation which we would like to obtain for
our models; The second, balancing of biological plausibility with potential application, is more
subjective, and is tied up in a researcher’s motivations.

The main feature of simplified modelling for AE is the ability to generate near-limitless
amounts of data, and to examine that data as closely as possible; It also involves the use of
counterfactual reasoning to see generalizations of real-world trends. Unfortunately, there is
no single obvious means of describing the functioning of a developing algorithm at intermediate
stages; There is the level of atomic components, too large and “messy” to be understandable, and
there is the level of fitness, too coarse to indicate anything save the efficacy of the result towards
some goal. There have been some limited attempts at characterizing the patterns of growth,
as in Miller’s French flag model [Mil04], but these have little explanatory value. The value of
the computational approach, and the potential improvement of the models, requires a more
constructive understanding than is provided through statistical correlation. Empirical study on
model-level perturbations is one route to this understanding; A better route although beyond
the scope of this thesis, would be the automated discovery of predictive sub-environment-level
structure.

The second issue with current work is the tenuous relation between modelling and algorithm
design; There is good reason to accept biological mechanisms as inspiration for design reasons14,
but there are limits, and we question the value of the creation of ever more realistic models.
Statistical correlations to models of reality will only serve as an approximate of what can only
be proven in a lab, and the more accurately a system models reality will only constrain the
observable phenomenon — this leaves little room for improvement on simple lab work. While
these models may serve to confirm in the future that all relevant components required for the
development of a known organism are sufficient, it is doubtful that such a model will provide
additional understanding of the phenomenon in question. Instead, we are more interested in what
occurs when a biologically-informed system diverges from reality. Indeed, there is significant
history of simple counterfactual experiments in AE (re-)discovering interesting principles;

As an example, consider the topic of design of environments, where Kumar and Bentley
note, “the reason for the success ... [was that] their environments were rich with dynamics
such as surface tension, gravity, friction, inertia, moments and energy dissipation... A simple
environment reduces the capacities of development. A rich and complex environment enhances
the potential for development” [KB03]. In brief, this may be summarized as: the environment
provides a canalization of development, a tunnel through the large space of possible phenotypes.
(Perhaps unlike Kumar and Bentley) we do not consider this a reason to abandon simple en-
vironments in favour of richer ones, but instead to explore the limits of what can be done in
the simpler environments relative to the richer ones — it is well known that simple worlds can
lead to remarkable patter formation (as in Packard’s Snowflakes, for example [PW85]), and we
are left with the question of what additional requirements there exist for automated design, or
canalization of space so as to make it searchable. This, in the author’s opinion, is the primary
means by which AE may contribute to understanding biology — by discovering general prin-

14We have many working examples, after all!

20

ciples through abstracted experimentation which, ideally, may be tied to real-world data in a
predictive way at some later date.

2.4.4 A Critique of a Critique

On the topic of modelling EvoDevo, Carroll writes [Car05]:

Still, the central importance of genetic switches to pattern formation has not yet
fully penetrated the computational modelling world; for example see S. Wolfram
.... The continuing mistake is being seduced into believing that simple rules that
can generate patterns on a computer screen are the rules that generate patterns in
biology.

This is, unfortunately, a simplification of Wolfram’s concepts and arguments15. Wolfram’s
primary argument (in this context) involves the universality of computation in nature, and the
equivalence of the various models thereof [Wol02]. While Wolfram’s argument might be vague
and largely unsupported, it contains Genetic Regulatory Networks as a subset; Hence, a central
tenet of Carroll’s book, that GRNs along with switches are capable of supporting the patterns
found in nature, is in fact evidence for Wolfram’s thesis. The claim that other systems, such as
Cellular Automata, are capable of supporting the same patterns as GRNs and switches becomes
trivial: GRNs and switches are an algorithmic process, and CAs are a model for computation.
The confusion here seems to be in comparing a higher-level of theorizing with direct modelling;
Wolfram’s “suspicions” are not claimed to be a direct, simple or efficient model, and the level
of vagueness in his claim affords the possibility that the CAs be used to model GRNs, or some
equivalent model. Carroll seems to miss the possibility that a smaller-scale CA may allow GRNs
as an emergent phenomenon, or that a coarser-scale CA may model, precisely or approximately,
the behaviour of the GRNs — the latter possibility is, in fact, crucial to the success of Deva.

In any event, it should not be, in our opinion, the goal of computational development to
model real-world embryogenesis, any more that the goal of calculus should be the modelling
of thrown baseballs, or dynamical systems the modelling of pendula; Although there is always
a hope of reverse-engineering principles applicable to biology, the goals of computer science
and mathematics should, in general, be wider and aimed at greater abstraction — this, in my
opinion, is the source of mathematical understanding. Of course, there is never a clear notion
of what should be dictated by real-world data and where abstraction should begin; The only
approach is to make an educated guess and try.

2.4.5 Complexity and AE

AE has largely been spawned from interest in the canalization of development (channelling)
found in natural systems, and the hope that general and useful principles may be reproduced
by computational models. Developmental systems, both natural and artificial, may be viewed
as constraints of the space of all possible phenotypic configurations, and, at least in artificial
cases, prevent large portions of the phenotypic space from being searched [HM06].

15Otherwise, Carroll’s book was a wonderful introduction, from which I have borrowed sources and quotations
liberally

21

There is ample demonstration that this canalization may be used for constructive purposes,
allowing, amongst other things, for very large organisms to be designed. Banzhaf and Miller
phrase one of the goals of AE eloquently: “the challenge is to radically dispose of the complexity
limits for the evolution of computer code, and aim at complexities heretofore only achieved by
large teams of human programmers” [BM04].

Unfortunately, in Artificial Embryogeny and related systems, the definition of complexity
is usually left implicit. For instance, in his discussion of the generation of complex programs,
Banzhaf discusses complexity only in terms of the number of components, stating simply that the
generation of a program with a trillion components is “impossible” by “conventional methods”
[Ban04]; Of course, this is an approximation of truth. It is quite easy to, for instance, design
a set-theoretic program which outputs the number one trillion using a trillion nested successor
functions. In another paper, Banzhaf and Miller instead use a more Algorithmic Information-like
discussion of complexity, stating an overall goal to be to “evolve a program whose purpose is so
complex that it requires 100,000 or a million lines of code or 10,000 modules of average size 100
lines of code” ([BM04], emphasis added). Of course, this is also an approximation — a strict
reading of this goal would require that the developmental solution also require a million lines
of code to achieve the program in question16, raising the question - why use an embryogenic
approach?

Another approach has been taken by Hornby, who is interested in the use of developmental
systems for evolutionary design. For Hornby, the term complexity should refer to our “interest
and the ability to produce designs”; Hence, his notion of complexity implicitly encapsulates
characteristics which directly contribute to the fitness of the generated organism. Hornby shows
that the inclusion of explicit mechanisms encouraging modularity, regularity and hierarchy are
positively correlated to the generation of highly fit organisms in the development of table designs;
“These measures of design complexity more intuitively measure the structural complexity of an
object than the Kolmogorov complexity” [Hor05]. Hornby’s usage actually implies the opposite
of the notion of complexity utilized by most physicists, most easily seen when he demonstrates
that a random bit string would have very low complexity by his measure.

The actual need for a developmental stage in complexification has been called into question
recently by Stanley; Stanley uses the term complexification to mean that “evolution can elabo-
rate and increase the complexity of its products by adding new refinements and divisions [new
genes] during embryogenesis... this process of complexification allows evolution to discover more
complex phenotypes than would be possible through optimizing a fixed set of genes.” He then
proposes a network of functions applied in composition as a model in which complexification
may occur; These CPPNs (Compositional Pattern Producing Networks) accept a location in
space as input, then output a value by feeding through the network of functions, outputting a
single value representing the specialization at the original site. Interestingly, there does not exist
any obvious developmental stage. Through these networks, CPPNs may be found to implement
many regularities believed significant to the canalization of space for biological design. Stanley
uses a subjective evolution to generate images displaying the desired regularities — throughout

16Consider: our task may be solved by a program developed by an embryogenic technique. Then, the Algo-
rithmic Information of our task is no greater than the length of the embryogenic system, plus a command which
runs the output. So, either our initial goal was not, in fact, that complex initially, or our embryogenic technique
requires a million lines of code.

22

the “complexity” of the image is referred to implicitly as the amount of (visually estimated)
intricacy in the output image [Sta06].

Some authors in AE literature are directly interested in compression-based measures; For
instance, Lehre and Hartmann [LH04] use the Lempel-Ziv compression algorithm as an ap-
proximation of Kolmogorov complexity (See Section 2.1 for a discussion of this approximation).
Lehre and Hartmann show that the LZ compression algorithm corresponds to an intuitive and
predictive measure of problem complexity, helping to determine the appropriateness of AE tech-
niques for problem solving. A similar measure is utilized by Federici and Downing who order
target patterns by “complexity” in an argument involving the inclusion of “evolutionary stages”.
The problem is comprised of growing images to match given patterns, each of which is given
a complexity rank through a general-purpose compression algorithm, ARJ. Approximations of
these patterns are then evolved through the developmental algorithm, implementing a neutral
complexification, that is, a designed set of complexifying steps [FD06].

The above discussions no doubt take a more literal reading than was intended by the original
authors; Indeed, Banzhaf and Miller foreshadow some of our arguments later in their paper when
they note that “the complexity of the organism stems mainly from outside and has not to be
provided by the genotype”. However, this precise interpretation does highlight the difficulty in
finding a more precise formulation, and outlines how ambiguity can slip into our discussions as
a result.

2.5 Static Structures

Trusses are well studied examples of structural design, being used by architects and engineers
in nearly all construction; Often, they are cited as the simplest such model. Still, as an approx-
imation of actual real-world structures, trusses are close enough to be suitable models for most
small construction projects, and are typically used at least in the initial design phase of nearly all
large construction. Truss-based structures invisibly form the basis of nearly every large building
or tower, but are most obviously visible in bridges, hydro towers, house roofing (Several exam-
ples of constructions resembling space trusses are shown in Figure 2.10) — although a simple
model, truss design can be exceedingly complex. As such, trusses are an appropriate choice for
evaluating a model’s ability to perform structural design, allowing for an evaluation of those
designs from a completely independent context.

We are interested in a model which consists of joints, beams and grounds. All beams are
connected via joints, which may be connected to grounds. We will provide a structural diagram
composed of these three sorts of components, and ask if the structure (a) is stable, and (b)
is capable of supporting weight. Figure 2.11 shows two trusses; The first is stable, but the
second is not — any external force would cause the second to deform drastically. Another
important issue involves the deformation of the truss members under strain; Given some beam
and an external force, a beam will either compress or stretch, which in turn will cause the truss’
joints to dislocate. Some dislocation is to be expected, indeed, some dislocation is precisely
the advantage to the use of joints rather than rigid connections. Too much, of course, will
compromise the design. Such a model is called a truss — in our case, a plane truss, as our
model is two-dimensional.

23

Figure 2.10: Space Trusses in construction: (left) la Biosphère d’Environnement Canada, (right) Pont
Jacques Cartier; Montréal, Canada

Figure 2.11: Two plane trusses, the left is stable, the right unstable. Labelled on the left: external force
P applied to the top joint, reactive force R from a base joint, member force Fi of the ith member.

We will analyze a given truss by assuming that the structure is resting at equilibrium, that
is, that every force acting on the truss is balanced by an equal reacting force — this will imply
that the force in each beam, either compression or tension, is balanced. If this is not possible,
then we are assured that the structure is not stable — if it may be balanced, then we may ask
questions about the maximum amount of force going through any particular beam, and reason
about maximum weight load.

The assumptions implicit in our model are as follows:

• All member beams are pin connected, at an infinitely fine point

24

• All external loads are applied only at joints17

• All members are two-force members

These assumptions are made to simplify computation, but can be shown to reasonably approx-
imate real-world conditions.

2.5.1 Truss Stress Analysis

We now examine the computation of member-forces in an arbitrary plane truss18. This section
is a shortened version of Appendix C.1, derivation of the following techniques may be found
there.

There exist some simple counting tests that may determine if a given truss is unstable.
Failing that, we must attempt to compute the equilibrium state given some external forces —
in the process, we obtain values for all member forces. In our example, all truss members are
identical in terms of material and area, grown in a developmental space where units (and hence
also rc) are measured in meters; We set EA = 1.57 × 104 N, corresponding to a modulus of
elasticity for steel [Meg05] and a cylindrical member of diameter 1 cm.

Consider a general truss with n joints and m beams; We are provided with external forces
to be applied at joints, and wish to determine the member forces. Let our structure forces
be {P} = {P 1, ..., Pn}T , structure displacements be {∆} = {∆1, ...,∆n}T and member forces
be {F} = {F 1, ..., Fm}T . We may relate the individual member forces to displacement and
structure forces as follows:

{F}i = [k]ia[β]i{∆} (2.4)

where [β]i is the connectivity matrix for the ith member beam, and [k]ia is its stiffness matrix,
relating the deformation of the beam under a given force to the displacement at the joint. Hence,
to solve for forces, it suffices to compute the displacements. The displacements may be computed
through a truss stiffness matrix, a combination of the individual member stiffness matrices:

{∆} = [K]−1{P} (2.5)

Hence, given a plane truss, we may first compute the stiffness matrix, then compute the dis-
placements, then the individual member forces. The entire process is bounded by the calculation
of a matrix inversion (or LU-Decomposition), and hence has running time O(m3).

2.5.2 Evolution of Structures

There has been significant interest in the evolution of structural designs. This has included
several frameworks for their analysis, including plane and space trusses, simplified models of
Lego, and others. The Lego and related simple models have led to some interesting research in
design, including the early development of buildable structures [FP97], or, more recently, the
use of AE for the design of a simple arch, including scaffolding [RP04]. However, since we desire
a notion of structural design which may be evaluated through means external to the A-Life
community, we will instead concentrate on models taken directly from Engineering.

17We will simulate the weight of each beam by adding downward forces to each joint.
18This analysis is taken largely from West’s treatment [Wes89].

25

There have been many attempts to use EC for structural design — an extensive recent
review was conducted by Kicinger et al [KAJ05]. Typically, use of EC in structural design
concentrates on optimizing the sizing or shape of existing frameworks — our work, however,
involves topological design. Use of a GA to optimize a topological design through a relatively
bijective relation between genotype and phenotype has been conducted by Rajan [Raj95] (who
also optimized sizing and shape). A more complex approach was undertaken by Yang and
Soh, who used a GP approach to optimize topology in the context of tall buildings [YS02].
Kawamura and Ohmori used a constructive (but bijective) technique to design a series of small
but architecturally pleasing trusses [KO01].

26

Chapter 3

A Simple Complexity

Complexity is a topic often discussed in Artificial Embryogeny (AE) and Biology; Indeed, the
notion is fundamental to several interesting open topics. Unfortunately, there does not exist
any single accepted definition of the term, and many authors use it implicitly; This severely
undercuts our ability to evaluate related hypothesis.

For instance, consider the term “complexification”, typically used to describe the increase
in phenotypic (organismal) complexity which accompanies the growth of genomic complexity
during evolution. Whether such a (causal) link exists in natural history is a much discussed
topic in biology today ([McS91], [Gou02]), and indeed, has generated some interest in Artificial
Embryogeny as well ([Sta06], [Alt94]). However, without any existing standard for measuring
genotypic or phenotypic complexity, any relevant claims are simply not falsifiable. This is a pity,
since Artificial Embryogeny is uniquely capable of evaluating these claims, as AE is uniquely
capable of generating control data, consisting of, say, random genetic drift bounded below. As
a second example, consider the notion of the existence of an “edge of chaos”, that is, a region
between orderly and chaotic growth where “interesting” algorithms lie; Evaluation of any such
notion is also highly dependent upon the choice of complexity taken [Bro07].

This chapter begins with a discussion of notions of complexity in Biology and AE, reviewing
existing work related to the topic, discussing motivations, weaknesses, and interest specifically
to AE. Of particular interst will be the role of the dynamic and the environment in these
measures, and the biological motivations for such considerations. We will not be interested in
related topics such as Complexity Theory or Self-Organization, believing this first stage to be a
necessary precursor to those more ambitious topics.

Consider the question, posed quite informally: does the genome of a tree anywhere encode
the information that “the bottom of the tree is fat, and the top skinny”? We suspect that
it does not; Instead, we believe that the genome of a tree specifies some cellular layout for
branches generally, while the relative size achieved is controlled by the availability of resources,
constrained by the thickness of the base. Another: do the genes controlling the development of
a vascular system specify its overall morphology? Current research suggests that it does not,
that vascular growth instead expands to accommodate available structure, overall morphology
being specified by other genes (amongst other factors).

It is our suspicion that current work in AE, especially views on complexity, do not sufficiently

27

consider the role of environment and dynamics in development. We will propose a modification
of Kolmogorov complexity, along with some other measures, in an attempt to rectify this. In
so doing, we will derive a definition with properties quite different from those of traditional
Kolmogorov complexity, notably, computability.

Next, we will define perhaps the simplest model of AE possible, the Terminating Cellular
Automaton (TCA). Using a one-dimensional version of TCAs on simple binary strings, we will
be able to compute our defined measures (although doing so via brute force would likely be
intractable in some other, less minimal model). We then contrast the measures with each other,
discussing similarities and differences.

3.1 The Importance of Environment to Embryogenesis

AE has largely been spawned from interest in the canalization of development (channelling)
found in natural systems, and the hope that general and useful principles may be reproduced by
computational models. Developmental systems, both natural and artificial, may be viewed as
constraints of the space of all possible phenotypic configurations, and, at least in artificial cases,
prevent large portions of the phenotypic space from being searched [HM06]. Of course, the trade-
off involves easier access to other portions of a typically large and un-evolvable phenotypic space;
The same principle is described by Gould in natural systems: “Lest we begin to suspect that
rigid limitation must represent the major evolutionary implication of such a constraint, I must
re-emphasize the positive aspect of constraint as fruitful channelling, along lines of favourable
variation that can accelerate or enhance the work of natural selection” [Gou02].

For instance, consider the case of the divergence of the echinoderms from their bilateral
ancestors. Bilaterals are characterized by, amongst other traits, a vascular system carrying
blood, a bilateral morphology; The echinoderms, on the other hand, have a radial morphology,
and a transport system which carries water. Remarkably, the regulatory genes which code
for these developmental traits displayed minimal changes — instead, it is their role in the
dynamic of development which has altered in evolution. “The highly derived body architecture of
echinoderms evolved at least in part through extensive modifications in the roles and expression
domains of regulatory genes inherited from their bilateral ancestors. Even the limited number of
genes and species we examined demonstrates a remarkable evolutionary flexibility” [LW97]. It is
surprising, as Gould notes, “that the evolution of differentiated and specialized Baüplane from
a presumably homonomous common ancestor proceeds... by reduction and restriction, rather
than by addition of genes or expansion of their domains of activity,” quite unlike the mechanism
specified by theories of complexification [Gou02].

This is quite a divergence from the motivations of Physical Complexity proposed by Adami.
Here, we are emphasizing the ability of the dynamic of development to utilize the environment
in which it is found and adapt; This is not the same concept as the genome “having information
about the environment”; Instead, the genome specifies a program which can adapt to any of a
wide class of environments. It is having provided the environment “for free” that we see value
in measures for practitioners of AE; We do not seek a genome which describes our environment,
but instead, a genome which can exploit an arbitrary environment. A motivation to do so for
the AE practitioner is that the simpler the genome, the easier it is to find through Machine

28

Figure 3.1: A miscellaneous echinoderm (left) and a miscellaneous bilateral (right). (The Basket Star
was photographed at the Natural History Museum, London, U.K.)

Learing.
Several issues typically resolved somewhat arbitrarily in AE systems might become more

intuitive when environment is included more explicitly. For instance, termination is an issue
that pervades the Theory of Computation, and has been inherited by many AE models — when
do we stop re-writing the graph, or running the CA or replacing the sub-components? Increased
consideration of the developmental environment should provide natural answers, shifting the
focus to the question “does the cell / component have the requisite materials for reproduction
/ specialization?”

3.2 What Notion of Complexity is Desired?

We aim to discuss which measures of complexity are most appropriate for AE — definable and
computable descriptions which can help to formalize our intuitions, and, hopefully, to design
and guide future AE models. Our perspective for this complexity tends to be based on a cellular
granularity; That is, there appears to be a tendency to visually display cells or components, but
not morphogens or resources, when discussing phenotypic complexity. This is likely influenced
by biology, where time-lapse photographs of cells are sometimes used to study embryogenic
phenomena (as in the study of angiogenesis by Zamir et al [ZRL06]).

Further, we shall have no issue with awarding random data the highest complexity value with
our measures; Random configurations require the most effort to specify, and in our opinion, thus
qualify as the most complex. In the absence of a cohesive Complexity Theory, we should not
make assumptions about what Self-Organization is at this particular stage, instead satisfying
ourselves with a more comprehensive measure of developmental effort.

3.2.1 “Näıve” Organismal Complexity

It is clear from the above discussion that there exists a näıve notion of phenotypic complexity
which pervades our discussions; This is not a formally defined notion, but instead an ad hoc
description based on visual inspection. The obvious analogue from Biology is Structural Com-
plexity; Unfortunately, its use in AE directly is of dubious value. While the existence of several
forms of differentiated cell in an organism is evidence of some level of effort in the developmental
stage, it is not nearly so indicative as that found in biological systems. In natural systems, the
inclusion of the possibility of different cell specializations requires many resources and great

29

sophistication, whereas in most AE models, the cell types are simply pre-programmed, wait-
ing to be activated through a single available variable. We consider it highly unlikely that the
predictive value found in biology will be recovered in the AE analogue.

Instead, we desire some measure that will capture the effort required, or the information
contained, in the development of an organism. Actual computation of information would likely
require a notion of work, which is probably impossible given our perspective; Instead, we propose
using a familiar substitute, Shannon Entropy. In cases where the AE model begins with a static
number of undifferentiated cells, normalized entropy may be used. If the set of all cell types is
C, we have

organplexity(A) = − 1
log |C|

∑
i∈C

pi log pi (3.1)

where pi is the frequency of cells of type i in organism A. In other cases, where the number of
cells grows from some small mass, we may multiply by the number of cells,

organplexity(A) = − |n|
log |C|

∑
i∈C

pi log pi (3.2)

where |n| is the number of cells in the organism. The use of entropy as a measure has the
desirable property of additivity, corresponding to intuition.

Note the significant divergence from notions of self-organization in statistical physics, where
many authors use a decrease in entropy to describe self-organization [SSH04]. While this might
be appropriate for the description of how a randomized medium transforms to an ordered one,
it is not appropriate for our current perspective on AE, which begins with a uniform mass of
cells (or lack of cells altogether) that then grows and specializes1. Embryogenesis, viewed at the
cellular level, is an increase in disorder overall.

Unfortunately, it is impossible to compare this measure to any known relations to determine
its correctness; Indeed, some biologists point out that the evidence for complexification in nature
in general is inconclusive [McS91], which may undercut our reason for believing that any such
measure exists at all; Regardless, we offer organplexity as an improvement over implicitly defined
notions, and hope that usage proves it useful.

3.2.2 Genomic Complexity

Genomic size is easily defined in AE — for variable-length representations, simple length will
do. A better measure is often the number of utilized genes, those sections of the genome which
are activated during development, this latter measure being applicable to many fixed-length
representations as well. However, we desire to extract the important parts of the genome,
removing the redundant and non-functional portions; This will help us deal with issues such as
redundancy and (the genomic data formerly known as) “junk”. The effect of so doing should

1Differential models of morphogenesis may seem exceptions to this trend. For instance, Merks et al note that
when simulating vasculogenesis using a differential model, it is best to begin with a collection endothelian cells
distributed randomly over a lattice; It is likely that application of their model decreases entropy in this case
[MG05]. While this may be an accurate description, we note two issues: Firstly, the effort required to generate
the random distribution is discounted, which may have been greater than the effort involved in the subsequent
vasculogenesis; Secondly, it is possible that although a random distribution models reality well, that some other
process, not random at all in the sense of Kolmogorov, may also serve, hence not necessarily requiring a decrease
in entropy in the first place.

30

not be underestimated: Recall, after all, that the onion genome is five times the length of that
of a human’s!

The most direct means of capturing this is with Kolmogorov complexity. We wish to re-
define this measure so as to be more applicable in describing the information in an organism’s
genome, and not what is given “for free” by the environment.

Environmental Kolmogorov Complexity

Let us assume a space of genomes, g ∈ G, a space of organisms, p ∈ P , and a process, AE, for
mapping from one to the other: g `AE p. Also, let us assume that we have a measure on G

capturing the length of a representation, | · | : G→ R.
Given some target organism (configuration of our developmental-space), x, we may ask the

minimum size of program necessary to specify it under our scheme:

eKAE(x) = min
|g|
{g ∈ G | g `AE x} (3.3)

An important point about eK, as opposed to the original formulation of Kolmogorov com-
plexity is that eK need not depend on a Turing-machine2; Indeed, it need not depend on any
particularly complex grammar at all3! Since we have a finite world imposed by the developmen-
tal (phenotypic) space, the usual trappings of uncomputability and unpredictability need not
apply to eK4. Of course, the choice of embryogenic model becomes very important, as we no
longer have any guarantee of one model implementing another, as we do with Turing machines.

Note further that we may also define environmental logical depth:

eDAE(x) = τAE(g∗), where g∗ `AE x (3.4)

where g∗ is a genome which minimizes eKAE .

3.2.3 Functional Complexity

For the same reasons we reject Structural Complexity for AE, we must also reject the use of
“parts as proxy” for Functional Complexity — the importance of the parts has been undercut by
the fact that they have been purposefully included in the model in the artificial case. However,
in AE unlike Biology, we typically have the advantage that we have a raison d’être for our model:
either a fitness function we are seeking to optimize, or a set of goals we are hoping to reach
through machine learning. Given this, we can attempt a more direct definition of Functional
Complexity.

2Of course, one might argue that since a traditional definition of K uses a universal Turing-machine U ,
and since any developmental system can be implemented by U in constant time, that K is an appropriate
measure. Here, two factors should be noted: firstly, that U might be capable of finding patterns faster than our
developmental system by not implementing the developmental stage; and secondly, that since our developmental
system need not be Turing-complete, that U might reach patterns that our system cannot.

3After all, we have yet to see a demonstration that Turing-completeness is required for a model of the
development of living systems.

4Unfortunately, although eK is computable for most models of AE, it is not likely tractable for a substantial
model. However, it is likely that a version of Universal Codes [GV06], adapted to the AE model in question,
would be readily computable, allowing for good approximation in reasonable time. Or, perhaps simple random
search might yield reasonable approximations, at least for the purposes of empirical evaluation of hypothesis.

31

Niche- and Funcplexity

Here we will define a set of boolean objectives, and measure complexity in terms of which boolean
objectives an organism is capable of fullfilling. Let’s consider some specific boolean objective, φ.
An objective can be designed in an AE system in a variety of ways: by using the fitness function
(“φ(x) ⇐⇒ f(x) > 0.5”), satisfying criteria in a multi-objective optimization, or meeting some
specific task (“reproduce” or “survive for 100 time steps”), etc.

Then, we may consider the set of all organisms which meet objective φ:

Sφ = {α | α `AE x ∧ φ(x)} (3.5)

Given two objectives, we may compute the set as the intersections: S{φ,ψ} = Sφ ∩ Sψ. Hence,
given some objective, we have a group of agents that (potentially) fill a niche. The complexity
of the niche may be defined as:

nicheplexity(φ) = min
|α|
{α ∈ Sφ} (3.6)

We have chosen a measure ultimately linked to genomic length since we seek a measure of ease
of discovery in the context of evolution; We may well have defined an alternative nicheplexity

in terms of organismal complexity, say:

altnicheplexity(φ) = min
organplexity(x)

{x | α `AE x ∧ α ∈ Sφ}

Now, let us enumerate all objectives. Let us say that the set O = {o1, o2, ..., on} is the set of
all objectives which we are presently concerned with. Then, given some organism, x, we define
Fx = {o ∈ O | o(x)}. F is a description of x’s functionality relative to O.

Now, let’s define the functional-complexity of x:

funcplexity(x,O) = nicheplexity(SFx
) (3.7)

So, relative to objectives O, funcplexity first asks “what does organism x accomplish?”, then
asks, “what is the simplest agent which accomplishes everything that x does, with respect to
objectives O?”, and finally returns the genomic complexity of that organism.

3.3 A Domain of Discourse: TCAs

Here we attempt to create a very simple model of Artificial Embryogenesis, for the purpose of
concrete discussion. We will consider a simplified and finite version of Cellular Automata, the
Terminating Cellular Automata (TCAs).

3.3.1 One-dimensional TCAs

We restrict our domain to finite one-dimensional terminating Cellular Automata, defined as
follows: Let our developmental environment, E ⊂ Z, be a one-dimensional toroidal line of cells
of length l, let our alphabet be Σ = {0, 1}, and consider our system governed by a discrete time.

32

At initialization, or time t = 0, our environment begins with all states of colour “0”, save a
single central cell of colour “1”. Our system terminates after a specified number of steps.

Then, any particular TCA, α, is specified by a triple (d, t, φ):

• A diameter, 0 < αd ≤ l.

• A running time, 0 ≤ αt < 2l.

• A transition function, αφ.

We will define the genomic size of any TCA to be its diameter:

|α| = αd (3.8)

A rule set may be defined by enumerating all possible neighbourhoods of length αd and specifying
an output from Σ for each5.

We will write that a particular TCA, α produces pattern p = (x1, ..., xl), or

α `TCA p (3.9)

if running our TCA α for αt steps produces lattice configuration p. Given some arbitrary pattern
p, we know there exists some TCA which produces it (see Appendix A).

3.3.2 Measures of Complexity on TCAs

In the case of TCAs, we may define the environmental-Kolmogorov complexity as:

eKTCA(x) = min
αd

{α | α `TCA x} (3.10)

where x is a binary string of length l. Similarly, we can define e-Logical Depth,

eDTCA(x) = α∗t, where α∗ `TCA x (3.11)

where α∗ minimizes eKTCA.
Given some set of objectives, O = {o1, ..., 0k}, we may define niche and funcplexity:

nicheplexity(O) = min
|α|
{α | α `TCA x ∧ o1(x) ∧ ... ∧ ok(x)} (3.12)

funcplexity(x,O) = nicheplexity({o ∈ O | o(x)}) (3.13)

3.4 Experiments with One-dimensional TCAs

We have implemented TCAs, and used them to contrast the notions of complexity introduced
above. Our domain of discourse is the set of all binary strings of length l. For computational
reasons, l is kept reasonably small, assuming the values l = 5, 6, ..., 15. For each pattern of

5Note: the Elementary Cellular Automata may be considered TCAs with Σ = {0, 1}, αd = 3, l = ∞ and
αt = ∞ ∀α.

33

length l, we have measured complexity using: Shannon Entropy H (Eq. 2.1), Environmental-
Logical Depth eDTCA (Eq. 3.11), the LZW algorithm (Eq. 2.2), and Environmental-Kolmogorov
Complexity eKTCA (Eq. 3.10). In all cases, there were no patterns of eK greater than five6.

Additionally, we defined a set of objectives. These were:

• osymm: “x is symmetric”, excluding the central cell for odd l.

• oratio2: “the number of 1’s and 0’s in x differs by no more than 2”

• otrans4: “the number of transitions from 0 to 1 (reading from left to right) is no greater
than 4”

• oright0: “the rightmost cell has value 0”

• oblack80: “the ratio of 1s in x is more than 0.8”

These were divided into two sets, O1 = {osymm, oratio2, otrans4} and O2 = {osymm, oright0,

oblack80}. So, O1 requires a symmetric, equally distributed pattern with few colour changes.
O2 requires a pattern which is mostly 1s, with a right-most value of 0, also symmetric. Using
this set of objectives, we were able to compute the nicheplexity and funcplexity of the given
patterns (Eq’s 3.12 and 3.13).

Using the patterns and their associated values as data points, we have computed the statis-
tical correlation between the pairs (graphed in Figure 3.2). Further, for many of the pairs, we
have computed the lines of best fit, in order to show the directness of the relation between the
data.

Note firstly that all measures are generally positively correlated; This is not surprising, since
all measures reward very simple data low values, and all measures award random data with
high values (save eD, the measure with the lowest correlation values). We will consider higher
correlation values to indicate more agreement between measures (although that relation need
not necessarily be direct).

The tendency of correlations involving H to oscillate is probably due to the difference between
even and odd lengths; H is capable of reaching maximum value on even lengths, but not for odd
lengths, since it is impossible to have equal proportion of cell types. This artifact would quickly
become negligible for large l.

The measure eD is not well correlated to any of our other measures of complexity at all;
This is not a drawback in and of itself, the computational complexity of a growing agent is
quite a unique and important concept to AE, capturing the notion of difficulty of development.
Unfortunately, eD did not correlate to our functional measures either, meaning that patterns
with close functional value will not generally have close running times. Further, values of eD

varied substantially for patterns of the same functional class which had the same measures of
other complexity measures, such as eK. Hence, we find it unlikely that eD would be of practical
use otherwise.

High correlation may be observed between H and funcplexity; This is due to the specification
in the objective sets of particular proportions of cells of type 0 and 1, leading to particular values
for H. Figure 3.3 compares the lines of best fit for data plots of H versus funcplexity for the
l = 12 data; The relation for O1 is far more direct, as to be expected from the criterion oratio2:
“the number of 1’s and 0’s in x differs by no more than 2”.

6At these small lengths, in turns out, there is no such things as a TCA-random string

34

Figure 3.2: Correlations between complexity measures by pattern length.

Figure 3.3: Lines of best fit for H and funcplexity for objectives O1 (left) and O2 (right), where l = 12.

Of course, there is no guarantee that patterns which satisfy some given set of objectives will
have high complexity by any non-functional measure; For example, at l = 10, the number of
patterns satisfying all criteria of set O1 was 22, while there was only one pattern which satisfied
all criteria of set O2. All agents satisfying O1 had an entropy of 0.971, due to specification.
Values for eK and LZW were slightly higher than mean, but not significantly so. The agent
satisfying O2 in fact had low values for all fields, such as an eK = 2 and H = 0.7219, this since
the pattern meeting the criterion was quite simple. A sample of the discussed patters are shown
in Table 3.1.

Note further that the correlation between LZW and H is generally much higher than the
correlation between either LZW and eK, or between H and eK; Lines of best fit are shown
in Figure 3.4 for l = 12. This is not at all surprising, since both H and LZW are frequency-

35

Table 3.1: Examples of growth of patterns of length 10 which satisfy (left) objectives O2 and (right)
O1, ordered by “complexity” (eK).

Pattern eK Development Pattern eK Development

0111111110 2 0001111000 2

1110000111 2

0010110100 3

0011001100 3

0101001010 4

1010110101 4

Figure 3.4: Lines of best fit for H and LZW (left), and LZW and eK (right), where l = 12.

based measures, while Kolmogorov complexity is far more general than that. We expect that
most any compression-based mechanism will serve as a measure of entropy-plus, rather than
approximating Kolmogorov complexity, this through any process less robust than Universal
Codes. While compression algorithms may correlate to more difficult problems, and may be
perfectly valid as a statistical estimate of problem complexity, there do exist forms of pattern
formation which they will not measure, even in the simple case of TCAs. Indeed, the cases
where the difference between eK and LZW were maximized involved the growth of simple
TCAs (eK = 2) which produced patterns which would not compress well due to a lack of
regularity; Two such TCAs are shown in Figure 3.5.

3.5 Conclusions

We have argued that it is not sufficient to use terms such as “complexity” or “complexification”
naively; It is necessary to spell out what form of complexity one is interested in, even if the
definition in the domain of application is vague. This, since the stated interests that exist in
the literature are not complementary, potentially leading to unnecessary misunderstanding. We

Figure 3.5: Two TCAs with low eK generating relatively difficult to compress strings, where (left three)
l = 11 and (right four) l = 14.

36

have discussed several possible notions of complexity in our review. A simple proposal was made
for a näıve notion of organismal complexity.

We have further argued that Kolmogorov complexity in its classic definition is probably
not desired; Instead, an environment-based Kolmogorov complexity is needed to discuss the
“easiness” of specification of pattern formation in a given embryogenic context. From similar
arguments, we further define some additional measures, eD, and functionally-defined measures,
niche- and funcplexity.

Based on our initial experimentation with short binary strings and TCAs, we have contrasted
our measures and derived some insight into their behaviour. Firstly, the various measures
disagree on wide classes of data, showing clearly that they are not equivalent. Frequency-
based measures, such as entropy and LZW compression do not agree well with Kolmogorov-like
measures like eK, which do not correlate well with functional measures, such as funcplexity.
There does not appear to be any immediately obvious “correct” notion of complexity — for
now, a practitioner must simply choose a perspective based on intuition. This is likely to make
evaluation of claims like the “edge of chaos” or complexification more difficult, as lacking a
single accepted notion of complexity, the hypothesis lose falsifiability. To properly evaluate such
claims, we must first find which class of measures, if any, has predictive value in the evolutionary
process.

Further, we have determined several specific insights: (a) that environmental-Logical Depth
does not display any particularly predictive properties, at least not with our simple example; (b)
that our functional examples mapped to very specific values for other more general complexity
measures, those values being dictated by the objectives which the patterns met. Perhaps this
was due to the specific objectives chosen, but the example serves to highlight that high fitness
agents need not necessarily correspond to high complexity by other more general measures at all!
Finally, (c) that no other measure correlated well with environmental-Kolmogorov complexity.

It is our suspicion that measures based on minimal genomic length, like environmental-
Kolmogorov complexity, will prove most useful to practitioners in AE, since they most readily
capture the notion of how easily a string can be found via Machine Learning. Alas, although
computable, eK is likely intractable for a problem of any significant phenotypic dimension. How-
ever, it is our hope that further research can find reasonable approximations, perhaps through
statistical approximation or some implementation of an AE-based Universal Codes.

37

Chapter 4

The Model

4.1 Deva Overview

Deva (Developmental Algorithm) is a collection of algorithms1 designed to implement artificial
embryogeny; The goal of Deva is to exploit the pattern formation routinely found in natural
embryogeny, balanced against the need for computational efficiency.

A Deva algorithm is a discrete dynamical system; It consists of a single “cell” developing
through discrete time via the repeated application of a transition function. A Deva algorithm
may be viewed as a metaphor for the embryogenesis of a multicellular organism from a single
seed or zygote.

Initially, a single cell of type “neutral”, with some given genome, is placed in the centre of a
discrete developmental space; All other points in this space begin as “empty”. Every non-empty
cell in developmental space may be viewed as an independent agent — each makes decisions
on the basis of its local neighbourhood and the genome. At every time step, a cell in the
developmental space examines its neighbours, consults its genome and some internal variables,
then executes an action. An action might be division (copying oneself to an adjacent point),
specialization (changing the cell’s type), or any of several others. Hence, entirely through cell
actions, a developmental space changes in time — we will refer to this change as “growth” or
“development”. The algorithm terminates when a developmental space is identical to the space
that preceded it immediately in time.

Much like a cellular automaton, a Deva algorithm uses only local information to implement
a dynamic. If we fix our choice of cell types and developmental space, the dynamic depends
only on the choice of genome (which defines the transition function). Typically, the number of
transition functions is astronomically large, and the relation between genotype and developed
agent wildly non-linear.

A particular example of Deva growth is shown in Figure 4.1, and a second with a different
transition function in Figure 4.2.

4.1.1 Integral Components

The integral components of a Deva algorithm are:
1We will happily refer to such algorithms as “Deva algorithms” despite the redundancy.

38

Figure 4.1: An example of growth in developmental space by a Deva 1 algorithm, where cell type is
indicated by colour, black being empty. (left to right, top row): time 0; 2; 4; 6; (bottom row): time 10,
20, 30, 40.

Figure 4.2: A second example of deva growth. (left to right): time 0; 10, 20, 30, 44 (termination).

• A developmental space, or a lattice of points with topology. Here, we will consider subsets
of Z2, although application to other lattices should be easily defined. This space will
change through discrete time.

• A finite collection of cell types; These are a finite number of component types which
will make up the final organism — the cell types may also be defined through possible
combinations of “genes” turned on or off2.

• A genome, a genetic structure which encodes the transition function. The transition
function is a function which maps from a neighbourhood of points to an action.

• A set of actions, describing what a cell may do in the following time step.

Below, we describe the genome and the actions in a Deva algorithm; The developmental space
and cell types are a matter of perspective, defined instead by the application or interpretation
in question (we define a particular application, Trusses, in Section 4.4).

4.1.2 Actions

Every cell in developmental space may be seen as an independent agent. Each is activated at
every time step, possibly executing an action.

Each (non-empty) cell contains a set of internal variables, notably an age, and a resource
counter rc. A cell may only become active if its age has passed a minimum threshhold (i.e. a
latency period for new cells), and if it has sufficient resources.

The following are a list of actions which might be included in a Deva algorithm:
2The “genes” we discuss here may be viewed sometimes as metaphors for genes proper, and sometimes

as metaphors for expressed protein; Essentially, they may be viewed as (possibly empty) factors in a cell’s
specialization.

39

Figure 4.3: A series of growths of an organism whose transition function returns only the “divide”
command, with rows corresponding to age = 0, 1, 2, 3, and 4, from top to bottom. The far left
contains a single, active, aged cell, followed by nine successive time steps; Finally, the same organism
an additional ten time steps later is shown.

• “nothing”, the empty action.

• “die”, the cessation of future functioning of the cell. This removes the cell, leaving an
empty point in the developmental space.

• “divide”, which makes a copy of the cell in a neighbouring location, usually the direction
away from the existing centre of mass (the best free location). The cell usually inherits the
colour of its parent.

• “specialize(colour)”, which causes a cell to change specialization to the specified colour.
The neutral colour is omitted.

• “elongate”, which elongates the cell in the best free location, or in a specified direction.

• “on(gene)”, which activates a particular gene.

• “off(gene)”, which deactivates a particular gene.

Any cell action that creates, moves or specializes a cell will cause the resource counter rc to be
appropriately decremented; This is intended to encapsulate the materials required to implement
the cell action in the chosen domain of application. The decrement is performed prior to any
division, hence affecting both the source and the copied cell.

Figure 4.3 shows the growth of an organism whose transition function returns only the
“divide” command, using the best free location algorithm (see App. B.1.2), with a sufficiently
large value of rc. The only varying parameter is the age parameter, shown on the rows of the
figure. As can be seen, the initial values vary somewhat, but the later values, age = 3 and 4,
create a series of perfect diamonds, age = 4 doing so slightly more slowly than age = 3. It is
expected that larger values will also create a series of perfect diamonds at successively slower
rates.

4.1.3 Transition Functions

A Deva transition function may be viewed as an approximation of the more typical transition
function used for other sorts of automata. In a cellular automaton, for example, a transition
function is usually defined for each and every possible neighbourhood of a cell; This leads to

40

a representation length of kr, where k is the number of cell types, and r is the size of the
neighbourhood. Of course, for large k or r this quickly becomes intractable.

A deva transition function, φ, is a function which maps from a description of a neighbourhood
to an action, i.e.,

φ : S → A

where S is the set of all neighbourhood descriptions, and A is the action list associated with
the particular deva model. Any such function could, in principle, be used. The genome of any
agent is simply a representation of this function.

The majority, although not all, of our deva models will be rule-based models, meaning that
the transition function may be written as a series of pattern-matching rules. The rules are of the
form (s, a), where s is a description of a possible state of a neighbourhood, and a is an action:

s→ a

i.e., that matching state description s leads to action a. Hence, φ may be thought of either as a
function, or as a listing of rules. Given some current cell c with neighbourhood µc, we interpret
the rules as a function according to the following algorithm:

Neighbourhood description sc ← description(c, µc)
Rule rmin = (smin, amin)← (Ø,Ø)
double min←∞
for all ri = (si, ai), ri ∈ φ do

if distance(sc, si) < min then

rmin ← ri

min← distance(sc, si)
end if

end for

return amin

This function is made precise through a definition of the neighbourhood state description, and
a notion of distance between these descriptions. Assuming that examining and constructing
a neighbourhood description may be accomplished in constant time, the time necessary for
obtaining a value from the transition function is O(|φ|).

4.1.4 Deva Growth

Given definitions of neighbourhood state descriptions (and distances between them) and a set
of actions, we may define a deva growth algorithm. Growth proceeds according to the following
process:

Time t← 0
Initialize developmental space Dt

while Dt 6= Dt−1 do

t← t + 1
Dt ← Dt−1

for all Cell c ∈ Dt−1 do

41

Figure 4.4: Environments (left to right): thin, thick, swerve-l, swerve-r, bulb, bulbs, zigzag-s, zigzag-l.

if c has sufficient age and crc then

Action a← φ(µc)
Decrement crc

appropriately for a

Execute a in Dt

end if

end for

end while

A more explicit version may be found in Algorithm 1 in Appendix B.1.3.
Termination of the deva growth algorithm is guaranteed by the limitations of a finite resource

counter, rc; The nature of cell division and the square lattice guarantees that a grown agent will
fit in a diamond of size (2rc+1)× (2rc+1). Given this limitation, we have a worst-case running
time of O(r2

c) in terms of cell operations; Given that each cell operation requires a query to the
transition function, our total running time for development is bounded by O(r2

c · |φ|), which,
since |φ| is a constant system parameter, is O(r2

c).

4.1.5 Developmental Environments

In most experiments, we use a simple environment where the initial cell begins in a central
location, located at the bottom of the space. However, additional constraints may be placed
on development, and hence on evolution, through the choice of developmental space for growth.
Here we outline a few possible variants, used in later experiments.

Each environment is a connected subset of Z2, where the initial cell is placed in the lowest
central location of the space. We use several environments for growth (with lengths specified in
meters, for reasons soon to be clear):

• thin and thick, environments of width 10 m and 16 m, respectively, each pointing straight
up.

• swerve-l and swerve-r, environments of width 10 m which, at height 10 m, swerve left or
right, continuing straight up indefinitely.

• zigzag-l and zigzag-s, a zig-zagging line of width 10 m and 8 m, with corners at heights of
multiples of 5 m and 4 m, respectively (“l” and “s” for large and small).

• bulb and bulbs, environments composed of one or two bulbs, respectively, followed by a
shaft of width 10 and unlimited height.

• normal, an environment large enough to contain growth.

42

An illustration of the environments may be seen in Figure 4.4.
These environments are created by filling a sufficiently large space with “barrier” cells, that

is, cells which are neither empty, nor active. These cells do not contribute hormones to the
description of neighbourhoods.

4.2 A Variety of Deva Models

Here we loosely describe our various Deva models. The interested reader is urged to consult
Appendix B for specifics. The various Deva models we will discuss are summarized in Table 4.1.

4.2.1 Deva 1 Models

The deva implementation Deva 1 is our original Deva implementation, and is the model most
often used as a control for future experiments; As such, we will describe it here in greater detail
than the other algorithms.

Deva 1 makes liberal use of the best free location algorithm (See Appendix B.1.2). The
set of actions includes is the set A = {die, divide, elongate, specialize(2), ..., specialize(nc)}.
Hence, |A| = 2 + nc.

A Deva 1 transition function is a listing of descriptions of possible neighbourhoods of a
specified length, |φ|. These rules are tuples of the form:

(c, h1, ..., hnc , a)

where c is a colour, a an action, and hi is a count of the number of neighbours of cell type i, or
a hormone-level. The size of such a transition function is hence |φ| · (nc + 2) integers, and the
total number of such transition functions is |φ| · nc · 12nc+1 · |A|.

Any particular cell may consult its transition function to determine an action appropriate
to its neighbourhood. By consulting its neighbourhood, it may construct nc environmental-
hormone-readings, or a count of the number of cells of type i in its twelve-neighbourhood (relative
to the source cell); These will be written {e1, ..., enc

}; Next we find the rule in our transition
function which closely matches the set of ei to the set of hi using Euclidean distance (See
Algorithm 2 in Appendix B).

We would like a means of initializing a set of rules such that hormone values in the rules
are likely to match possible neighbourhoods in developmental space. As the integer values may
range between 0 and 12, uniform random selection will likely result in an impossible3 pattern
(i.e. one in which

∑
hi > 12, in two-dimensions). Hence, we desire a power-law distribution

which favours 0:
Pr[X = i | 0 ≤ i ≤ 12] =

1∑12
j=0 βj

β12−i

We would like the expected value of the generation of any particular rule to be somewhere in the
range of {0, .., 12}, where selecting a larger value is preferable, since the majority of computation
will occur in a full neighbourhood; Hence, we take E[nc · X] ≈ 12. Solving (numerically) the

3Impossible for exact matching, that is, and less likely for more reasonable distributions for closest distance-
matching.

43

equation
12
nc

=
1∑12

j=0 βj

12∑
i=0

i · β(12−j)

we obtain β ≈ 3.6 for nc = 32 and β ≈ 6.3 for nc = 64
We also require a probability distribution for possible actions:

Pr[Y = a] =

1/4, if a = “divide”

1/4, if a = “die”

1/4, if a = “elongate”

1/4, if a = “specialize”

where all colours of specialization are equally likely, save “0” or “1”, which are excluded. If the
“move” action is included in the run, it simply replaces then “elongate” action.

Hence, we may generate a random rule by (uniformly) randomly generating an initial rule
colour, then generating nc hormones and one action according to the above distributions. The
same distributions may be used for the genetic operator mutation.

4.2.2 Deva 1 Variants

As Deva 1 was the first implemented algorithm, it was chosen most often for comparison; For
this reason, there are many variants of this particular model used for our comparative study.

The Deva 1.N Model is the same as the Deva 1 model with the addition of an explicit
“nothing” command. This was added after initial experiments with Deva 1 showed the model
using repeated elongation as a means of preventing growth in a region of developmental space.

There were several models designed to test the efficacy of various alternatives (to the best
free location) abstractions of cell division: The Deva 1.Dir model replaces the divide comand
with “divide(d)”, where the direction d is explicitly specified genetically; The Deva 1.Allway

model causes a cell to divide in all directions simultaneously, thus influencing a quasi-symmetric
morphology; The Deva 1.Clockwise model specifies the location of division to simply be the
next free location clockwise from the left.

The transition function of the Deva 1 Model specified that in order to be considered, the
rule in question had to match the colour of the local cell; This caused a partitioning of the
genome, so that different cell types would query different subsets of φ. The Deva 1.Stateless

Model changed the form of the transition function, removing the specification of the state of the
querying cell, hence removing the state-based division of the genome. This option is included for
study as many existing models of AE in the literature both include or exclude such a mechanism
in the decision making process, seemingly arbitrarily. For instance, many morphogenic models
reason simply on the basis of morphogens, leaving the decision making process blind to a cell’s
current state; This is true of Turing’s original differential model [Tur52], and is true of most
similar systems (e.g. the Cellular Potts model [MG05]); Grammatical approaches, on the other
hand, include a cell’s current state as an integral part of the pattern matching mechanism, as
in most L-Systems models of plant development [PL90].

There also exists a version of Deva 1, named Deva 1.NoInher, in which the “division”

44

action causes the creation of a cloned cell in the best free location of type “neutral”; This lack of
cell inheritance is explored as it has been postulated as a positive mechanism of canalization of
the search space: Furusawa lists it as a key factor in the development of hierarchy and stability
in differentiation [FK98]; Indeed, this author posited inheritance of cell specialization as a key
factor in the improved performance of a developmental model for the growth of artificial agents
over a direct encoding [KGK04].

4.2.3 Deva 2 Models

The Deva 2 model was an attempt at decreasing the information present in the description of
a neighbourhood; Whereas Deva 1 assumed a cell type-based view of a neighbourhood, Deva 2
regards cells as collections of genes, which may or may not be activated.

A Deva 2 transition function consist of a series of rules of the form (c, h0,..., hng
, nj , a),

where hi is the number of cells with gene i activated, and nj is the number of cells with a joint.
The size of such a transition function is hence |φ| · (ng + 3) integers, and the total number of
such transition functions is |φ| · nc · 12ng+1 · |A|.

Hence, given a neighbourhood, rather than count the occurrences of a given specialization,
we count the number of cells with a given gene activated; This decreases the number of integers
required to specify a neighbourhood from nc to ng (recall that ng ∼= log2 nc). Since the transition
function consists of pairs (s, a) of descriptions of a state s (ng integers), and actions a (one
integer), we shorten the length of the genome substantially. However, in the process, we throw
away all information regarding which genes are activated in conjunction.

We have less difficulty with initialization for Deva 2 than we did for Deva 1, since all
possible hormone-descriptions are potential cells. However, in practice, completely maximized
neighbourhoods are rare, and not useful to our particular domain of application. Hence, we
use a power-law distribution for initialization of Deva 2 as well, but one that favours half-full
neighbourhoods (see Appendix B.4 for details).

The Deva 2.Stateless model is precisely the same as the Deva 2 model, but with states
removed, as in Deva 1.Stateless. The Deva 2.NoInher model is also like the Deva 2 model,
but without inheritance of cell specialization.

4.2.4 The Deva 3 Model

The Deva 3 model was chosen so as to model Cellular Automata more closely. In this scenario,
we do not approximate the description of a neighbourhood, but instead provide a complete
description to the transition function. Hence, the Deva 3 model provides a greater amount of
information regarding the extended Moore neighbourhood which surrounds a cell than did Deva
1 or 2.

The transition function consists of a series of lossless neighbourhood descriptions, meaning
that each site in the neighbourhood is specified precisely. Since any complete such description of
neighbourhoods would require a staggering amount of information (3212 integers), any particular
transition function consists of exemplar patterns which approximately describe any particular
cell’s current neighbourhood. A Manhattan metric was defined on these descriptions, used to
choose appropriate rules. There was no need to explore the use of states, since the precise

45

neighbourhood description is capable of implementing the states naturally.
The initialization of a Deva 3 transition function is far simpler than the other models, since

a uniform selection of values is guaranteed to describe a possible neighbourhood; Hence, simple
uniformly random initialization is used.

4.2.5 Deva 4 Models

The Deva 4 models were designed to minimize the specificity of the action set associated with
our developmental models. Instead of abrupt changes in cell specialization, we attempt a more
continuous version here, where cell specializations may be viewed as the cumulative action of
several genes.

Rather than include a “specialize” command for transforming cell types, we include com-
mands for activating and deactivating genes, “on” and “off”. The cost of activating a gene is
defined by the domain of application, while the deactivation is free (assuming that the genes spec-
ify some constructive property). Hence, our action list is A = {die, divide, on(g0), ..., on(gng

),
off(g0), ..., off(gng)}.

There are two versions of Deva 4 : 4.GeneType and 4.CellType . The first uses the tran-
sition function of Deva 2, hence describing neighbourhoods as collections of gene types; These
descriptions match the language of the actions. The second uses the transition function of Deva
1, describing neighbourhoods as collections of colours.

Both are initialized utilizing the distributions associated with the transitions functions’ home
models, save for the distribution specifying the actions. Just as Deva 2 was a simplification of
the description of neighbourhoods, the Deva 4 algorithms may be viewed as a simplification of
the specification of cell actions.

46

T
a
b
le

4
.1

:
A

su
m

m
a
ry

o
f
th

e
va

ri
o
u
s

D
ev

a
m

o
d
el

s
b
y

ch
o
ic

e
o
f
lo

ca
ti

o
n
,
m

o
d
e

o
f
n
ei

g
h
b
o
u
rh

o
o
d

d
es

cr
ip

ti
o
n
,
a
ct

io
n

li
st

,
a
n
d

m
ea

n
s

o
f
d
ec

is
io

n
m

a
k
in

g
.

M
o
d
e
l

L
o
c
a
ti

o
n

N
b
h
d
.

D
e
sc

.
A

c
ti

o
n
s

D
e
c
is

io
n

D
ev

a
1

B
es

t
fr

ee
lo

c.
C

o
u
n
t

o
f
ce

ll
ty

p
es

.
“
d
iv

id
e”

,
“
sp

ec
ia

li
ze

”
,
“
el

o
n
g
a
te

”
,
“
d
ie

”
R

u
le

-b
a
se

d
w

it
h

st
a
te

s.

D
ev

a
1
.N

B
es

t
fr

ee
lo

c.
C

o
u
n
t

o
f
ce

ll
ty

p
es

.
“
d
iv

id
e”

,
“
sp

ec
ia

li
ze

”
,

“
el

o
n
g
a
te

”
,

“
d
ie

”
,

“
n
o
th

-
in

g
”

R
u
le

-b
a
se

d
w

it
h

st
a
te

s.

D
ev

a
1
.S

ta
te

le
ss

B
es

t
fr

ee
lo

c.
C

o
u
n
t

o
f
ce

ll
ty

p
es

.
“
d
iv

id
e”

,
“
sp

ec
ia

li
ze

”
,

“
el

o
n
g
a
te

”
,

“
d
ie

”
,

“
n
o
th

-
in

g
”

R
u
le

-b
a
se

d
.

D
ev

a
1
.D

ir
S
p
ec

ifi
ed

ex
p
li
ci

tl
y.

C
o
u
n
t

o
f
ce

ll
ty

p
es

.
“
d
iv

id
e(

d
ir

ec
ti

o
n
)”

,
“
sp

ec
ia

li
ze

”
,

“
el

o
n
g
a
te

”
,

“
d
ie

”
,
“
n
o
th

in
g
”

R
u
le

-b
a
se

d
w

it
h

st
a
te

s.

D
ev

a
1
.C

lo
ck

w
is

e
C

lo
ck

w
is

e.
C

o
u
n
t

o
f
ce

ll
ty

p
es

.
“
d
iv

id
e”

,
“
sp

ec
ia

li
ze

”
,

“
el

o
n
g
a
te

”
,

“
d
ie

”
,

“
n
o
th

-
in

g
”

R
u
le

-b
a
se

d
w

it
h

st
a
te

s.

D
ev

a
1
.A

ll
w
a
y

A
ll

d
ir

ec
ti

o
n
s

si
-

m
u
lt

a
n
eo

u
sl

y.
C

o
u
n
t

o
f
ce

ll
ty

p
es

.
“
d
iv

id
e”

,
“
sp

ec
ia

li
ze

”
,

“
el

o
n
g
a
te

(U
P

)”
,

“
d
ie

”
,

“
n
o
th

in
g
”

R
u
le

-b
a
se

d
w

it
h

st
a
te

s.

D
ev

a
1
.N

o
In

h
er

B
es

t
fr

ee
lo

c.
C

o
u
n
t

o
f
ce

ll
ty

p
es

.
“
d
iv

id
e

w
it
h
o
u
t

in
h
er

it
a
n
ce

”
,
“
sp

ec
ia

li
ze

”
,
“
el

o
n
-

g
a
te

”
,
“
d
ie

”
,
“
n
o
th

in
g
”

R
u
le

-b
a
se

d
w

it
h

st
a
te

s.

D
ev

a
2

B
es

t
fr

ee
lo

c.
C

o
u
n
t

o
f
g
en

es
ty

p
es

.
“
d
iv

id
e”

,
“
sp

ec
ia

li
ze

”
,

“
el

o
n
g
a
te

”
,

“
d
ie

”
,

“
n
o
th

-
in

g
”

R
u
le

-b
a
se

d
w

it
h

st
a
te

s.

D
ev

a
2
.S

ta
te

le
ss

B
es

t
fr

ee
lo

c.
C

o
u
n
t

o
f
g
en

e
ty

p
es

.
“
d
iv

id
e”

,
“
sp

ec
ia

li
ze

”
,

“
el

o
n
g
a
te

”
,

“
d
ie

”
,

“
n
o
th

-
in

g
”

R
u
le

-b
a
se

d
.

D
ev

a
2

B
es

t
fr

ee
lo

c.
C

o
u
n
t

o
f
g
en

es
ty

p
es

.
“
d
iv

id
e

w
it
h
o
u
t

in
h
er

it
a
n
ce

”
,
“
sp

ec
ia

li
ze

”
,
“
el

o
n
-

g
a
te

”
,
“
d
ie

”
,
“
n
o
th

in
g
”

R
u
le

-b
a
se

d
w

it
h

st
a
te

s.

D
ev

a
3

B
es

t
fr

ee
lo

c.
L
is

t
o
f
ce

ll
ty

p
es

.
“
d
iv

id
e”

,
“
sp

ec
ia

li
ze

”
,

“
el

o
n
g
a
te

”
,

“
d
ie

”
,

“
n
o
th

-
in

g
”

R
u
le

-b
a
se

d
.

D
ev

a
4
.C

el
lT

y
pe

B
es

t
fr

ee
lo

c.
C

o
u
n
t

o
f
ce

ll
ty

p
es

.
“
d
iv

id
e”

,
“
o
n
”
,

“
o
ff
”
,

“
el

o
n
g
a
te

”
,

“
d
ie

”
,

“
n
o
th

-
in

g
”

R
u
le

-b
a
se

d
.

D
ev

a
4
.G

en
eT

y
pe

B
es

t
fr

ee
lo

c.
C

o
u
n
t

o
f
g
en

e
ty

p
es

.
“
d
iv

id
e”

,
“
o
n
”
,

“
o
ff
”
,

“
el

o
n
g
a
te

”
,

“
d
ie

”
,

“
n
o
th

-
in

g
”

R
u
le

-b
a
se

d
.

47

4.3 Evolution

The Deva framework is driven through Evolutionary Computation. Evolution acts on a set of
genomes (transition functions), and evaluates grown organisms. Excluding the inclusion of a
mid-step between genotype and phenotype, we use a typical Genetic Algorithm, as described by
Eiben and Smith [ES03].

A population of agents is created, each represented by a transition function. The genomes
are simply a list of integers consisting of the rules of the transition function spelled out. Initial
values for the first population are specified by a distribution, defined separately for each Deva
algorithm. There exists a boolean “useSeed” option by which the first rule in an initialized
genome is a “divide” action designed to match the initial conditions of growth.

Genetic operators are the same for all Deva algorithms4. Crossover is always pairwise, static
length and single point, swapping tail ends of genomes for two agents. Mutation comes in
two possible forms5 (both point-mutation), controlled by a system parameter: power-mutation,
which selects a new integer using the same distribution used for initialization; and copy-mutation,
which selects an integer uniformly from elsewhere in the genome, substituting that value6.

We use tournament selection by default, using a tournament size of 5 agents regardless of
population size, and a tournament probability of p = 0.7. This form of selection was chosen in
order to encourage diversity. As will soon become clear, convergence is difficult to recognize, so
trials were run for a fixed number of generations. Additionally, the initial population size was
larger than the population size for successive generations, by a factor of initMult.

4.4 Application: Plane Trusses

As previously described, Plane Trusses may be viewed as a simple and abstract way of capturing
the notion of structure — indeed, trusses form the basis for most modern construction. Our
overall goal here is two-fold:

• To demonstrate that a Deva algorithm is capable of designing non-trivial structures

• To provide an independent and external notion of “meaning” to organisms grown through
Deva algorithms

4.4.1 Representation and Cell Types

We begin by defining a representation of general plane trusses constructively on a lattice. We
aim to be able to map any lattice of integers to some plane truss, allowing for trivial, unconnected
and otherwise useless truss designs.

Firstly, we define a set of cell types — each non-empty cell will contain a joint, and between
zero and five beams. Beams will be assumed to be cylindrical and made of steel, although this

4This for analytic convenience only, it is almost certainly possible to tailor EC strategies to aid the particular
algorithms, but this is not our current interest.

5We also experimented with a uniform-mutation operator which simply chose a value uniformly from the
possible range — this mutation was dropped after poor experimental results, probably for the reasons described
in the initialization section.

6The copy-mutation operator is investigated due to recent suggestion that it aids in moving the population
towards an appropriate distribution of genomic values (as well as simple biological precedence) [MH05].

48

Figure 4.5: (left) Listing of the cell colours and their mapping to genes; (right) An illustration of the
four genes.

choice is rather arbitrary, and could be replaced with minimal effort. The beams will extend in
directions π, 3π/4, π/2, π/4 and 0, labelled g0 through g4 respectively; Hence, a non-empty cell
may be labelled by the presence or absence of these genes. This leads to 33 cell types, including
the empty cell, shown in figure 4.5. We may refer to any cell in the lattice either through a series
of boolean gene values, or as an integer in {0, ..., 32}. Conversion from boolean gene values to
an integer is accomplished through the following equation:

colour = 24g4 + 23g3 + 22g2 + 21g1 + 20g0 + 1

The zero cell type is reserved for the empty cell, while the one value is for a joint with no beams7.
The number of cell types, or colours, nc is

nc = 2ng + 1

where ng is the number of genes, ng ≥ 5.
Finally, we may allow cells to be elongated in either the x or y directions by an arbitrary

number of cell lengths. So, a cell of type 1 has an angle of 3π/4 with the x-axis, and a length of√
2; A single elongation in the y-direction would lead to a length of

√
5, and an angle of 7π/8

with the x-axis. In the case of elongation, we refer to the originating cell as the “source” cell —
this is the elongated cell, as opposed to the elongations8. A unit cell length will be mapped to
one meter, although this choice is also quite arbitrary at this stage.

Hence, excluding elongation, any two-dimensional lattice of integers may be mapped to
(some) truss9. One such mapping, including elongations, is shown in Figure 4.6.

An example of deva growth, interpreted as a plane truss with elongation, is shown in Figure
4.7.

7It is also possible to add additional hidden genes — these are genes which are not expressed in the phenotype,
perhaps allowing the developmental process additional “memory”. Of course, this increases the number of cells
in general.

8As elongation extends in a specified direction, the source cell may always be recognized as the first cell in
the list, for instance, the lowest cell in a line of cells elongated up.

9Once elongation is included, we must make some constraints on the relative location of the elongation integers
— this is, however, unimportant for our purposes, as deva growth would not allow for illegal combinations.

49

Figure 4.6: Example of a translation between a lattice of integers and a plane truss. The triangles are
interpreted as elongations of the adjacent cells.

Figure 4.7: An example of growth in developmental space by a Deva 1 algorithm, under the plane truss
interpretation (from left to right, top to bottom): time 0; time 10; time 20; time 30, time 40, the final
trimmed agent at time 45.

4.4.2 Trimming Grown Plane Trusses

A plane truss grown through a Deva algorithm comes with no guarantee of being well designed,
in general. In Figure 4.7, the growth of an agent is shown (in grey), whereas the final organism
(in black) is smaller — this is the result of a trimming process, applied to every organism
following development. The trimming process serves to: (a) remove obviously unstable sections,
such as beams which do not connect to joints at both ends; (b) to remove sections which are
not connected to the base of the structure; and (c) to remove redundant joints, replacing them
with longer beams.

The trimming process operates recursively, beginning with the base of the structure (hence,
unconnected portions of the truss are automatically excluded). First, obviously unstable struc-
tures are trimmed: At every joint, it removes any beams with no second connecting joint; Next,
if there is only one single beam connected to it, it removes itself. Crawling back from the extrem-
ities to the base, any “arms” (collections of beams and joints that do not form cyclic structures)
are removed. Once the obviously unstable “arms” are removed, the second part of trimming
is activated, removing redundant joints. The trimming process crawls through the remaining
structure, and examines every joint; If the joint has precisely two beams, and those beams have
the same angle, the beams and joint are removed, replaced with a new beam of length equal to
the sum of the two removed (So, for example, a straight line of beams connected by joints would

50

be replaced with a single long beam). As each of the two processes requires a single recursive
walk through the truss graph, running time for both is bounded by O(n), where n is the number
of beams in the grown truss. Note that there is no guarantee of stability at this stage, simply
an improved probability thereof.

4.4.3 Plane Truss Evaluation

The evolution of Plane Trusses may be viewed as a multi-objective evaluation; As such, there
are many factors involved in the computation of fitness. The factors include selection for non-
triviality (t), height (h), minimal use of materials (m), stability (s), and pressure distribution
(p). Each is described below for a general plane truss T .

A truss T is trivial if it contains less than three beams10:

t(T) =

 1
2 , T is trivial

1, ow

The height factor, h ∈ [0, 1], varies linearly between 0 for no height and 1 for the maximum
height; This is defined by h(T) = h

rc+1 , where h is the raw height of T .
Material use, m ∈ [0, 1], varies linearly between 0 for maximal use of materials, (rc + 1)2 in

beam length, and 1 for no use of materials.
The base factor, b ∈ [1/2, 1], is designed to be minimized when there are few base joints in

the centre of the space. We define the base count, b′ to be the sum of the distance of the existing
base joints from the centre,

b′ =
rc∑

i=−rc

|i| there exists a joint at location i

0 ow.

Then the base factor may be defined as

b =
1
2

+
1
2

(∑rc

i=−rc
|i| − b′∑rc

i=−rc
|i|

)

A truss is stable if it passes the stability test. In this test, a stress analysis is performed on
the truss. Initially, some trusses are declared unstable via a simple counting test — failing this,
we compute the stiffness matrix, and we declare a truss stable if the stiffness matrix is invertible
(see Appendix C.1), and if the maximum displacement is not absurdly high11. The stability
criterion is then defined as

s(T) =

1, T is stable
1
4 , ow

Given a stable truss, we may apply an external force to determine the stress on the member
beams and the displacement of the joints. We aim to describe a pressure distribution factor,

10Note: a different definition of “trivial” was used in the initial Deva 1 trials, where a truss was trivial if it
contained less that five cells or three non-empty cell types.

11Where absurdity kicks in at ten meters or more; This is necessary as the equilibrium process may sometimes
find stable points through profoundly unrealistic stretching of materials.

51

Figure 4.8: A screen shot of the stress analysis of two trusses under f1 — compressed beams are green,
stretched beams blue, beams beyond the yield of steel are red. The simpler truss on the left is both
stable, tall, and uses little material. However, it is incapable of supporting the load. The truss on the
right uses additional materials, but successfully distributes the load between two joints, scoring a higher
overall fitness.

p ∈ [1/2, 1]. External forces are applied to the truss, and the stress in each member beam and
dislocation at every joint are computed. The external forces are as follows: At every joint, 50 N
down and 50 N left are applied, exceeding expected force of gravity and mild wind12. Depending
on the fitness function, we apply additional external forces to particular joints, which far exceed
the effects of the above forces. If the maximum member-force leads to more than ± 165 MPa
of pressure13, or if any joint is displaced farther than one meter, we return 1/2. Otherwise, we
let the maximum pressure (in absolute value) be m′, and set

p(T) =
1
2

+
1
2

(165 MPa− |m′|)
165 MPa

We may now define several fitness functions. Our first, fmat, is designed to maximize height
while minimizing overall material. We evaluate pressure by applying 20 kN down and 5 kN
right14 at the highest joint; In the case of several joints, the force is divided evenly between the
joints. Hence, we seek a tall, minimal structure, capable of supporting a large mass at the top,
much like a tower supporting some additional structure at the peak. The fitness of a truss T is
defined as

fmat(T) = t(T) · h(T) ·m(T) · s(T) · p(T) (4.1)

Our second fitness function, fstoch, is similar to fmat in all ways except that rather than apply
external forces at the highest joint, we apply them randomly. Hence, three non-base joints are
selected at random, and at each we apply 5 kN down and 500 N either right or left (with equal
probability at each joint). Hence, fstoch = fmat in definition, but fstoch is a stochastic function.

Our third fitness function, fbase is again similar to fmat in that again, we apply 20 kN down
and 5 kN right divided between the highest joints. However, we remove the length minimization
factor and instead include the base minimization factor — hence, fbase selects for tall trusses

12The density of steel is approximately 77 000 N
m3 [Meg05], giving a truss of area 7.85× 10−5 m2 and length

1 m a weight of approximately 6 N; Hence, our trials far exceed the effects of gravity. Proper testing for wind
exceeds the scope of this project as it requires dynamic analysis, although 50 N is considered generous for a static
perspective.

13165 MPa is approximately 80% of the yield limit for structural steel [Meg05])
1420 kN is approximately the force exerted by 2 000 kg of mass — on a single beam it exerts approximately

255 MPa of pressure, more than the yield of steel.

52

capable of supporting a load at the peak occupying as little ground space as possible:

fbase(T) = t(T) · h(T) · b(T) · s(T) · p(T) (4.2)

Our next fitness function, flight is also similar to fmat, save that less external load is applied;
This fitness function is used for scenarios where additional constraints are placed on the designs.
At every joint, we apply 10 N down and 10 N left, simulating gravity and a mild horizontal
force. Additionally, we apply 2500 N down and 500 N right at the highest joint; In the case of
several joints, the force is divided evenly between them. The fitness of a truss T is thus defined
as

flight(T) = h(T) ·m(T) · s(T) · p(T) (4.3)

Since each fitness calculation is dominated by a matrix inversion (see Appendix C), running
time is O(n3), where n is the number of truss members. This is improved slightly by using an
LU-Decomposition.

53

Chapter 5

Deva 1 Experiments

In this chapter, we discuss our initial attempts to evolve Plane Trusses via our first Deva
algorithm, Deva 1. We explore the use of several different fitness functions and discuss the
discovered designs for each.

5.1 Experimental Set-up

Many trials of many different sizes (values of rc) were run. We chose to investigate the use of
different fitness functions (the Fitness Trials). Data was collected for runs of size rc = 16, 24;
In general, we would have preferred larger runs as there is suggestion that AE approaches are
particularly suited for problems with a large number of components [HM06], [KGK04], but the
computational expense of the repeated runs necessary for establishing a trend are great. Some
runs with different values of rc were conducted, including rc = 40, the last of these having
required more than one week of time on a dual-processor 2.4GHz machine.

Parameter settings for the Fitness Trials runs are:

population size 200 init. pop. size 2000

prob. crossover 0.8 rate. elitism 0.01

prob. copy-mut. 0.05 prob. power-mut. 0.05

useSeed true |φ| 100

There were ten runs of the Fitness Trials for each fitness and rc setting, rc = 16, 24. These runs
are referred to as fit.x.y.z, where x is a fitness function, y is an rc value, and z ∈ {0, .., 9} is
an index. Hence, fit.stoch.24.3 is the third run of the rc = 24 trial using the fitness function
fstoch.

5.2 Data and Analysis

In all trials, successful trusses were evolved — all runs found stable trusses, and 56 of the 60 found
trusses capable of supporting the applied external forces1. In general, heights of approximately
9m were found in the rc = 16 trials, and heights of 18m when rc = 24.

1At least, in the case of the fstoch trials, capable of supporting the forces as applied in the 100th generation.

55

Figure 5.1: Plots of fitness (y) versus generations (x). Maximum fitness of each of the (top to bottom)
fit.mat.16 and fit.mat.24; fit.stoch.16 and fit.stoch.24; fit.base.16 and fit.base.24 runs.

The maximum fitness of agents in the rc = 16 Fitness Trials are graphed in Figure 5.1. Note
that frequent plateaus are found in each run, also present in the rc = 24 runs; This suggests
that the genetic operators are more frequently impotent or destructive, relative to more typical
experiments in GAs. It is also reminiscent of theories of evolution via punctuated equilibria,
where (real-world) evolution is believed to work via infrequent jumps.

There are some general remarks about Deva 1 evolution in general; As illustrated in Fig-
ure 5.2, a visual continuity between the phenotypes of members could typically be seen — in
the example, agents show many similar qualities, including the presence of single-unit length
crossbeams, hollowed-out centres, and elongated base supports.

56

Figure 5.2: The top ten (by fitness, excluding repeats) individuals of the 100th generation of an rc = 12,
fmat run. All shown agents were stable and capable of supporting the external load save the fifth and
sixth trusses.

Figure 5.3: Exemplar organisms from the Fitness Trials: (top) two organisms from the fmat func-
tion, fit.mat.24.4, fit.mat.24.1; (middle) two organisms from the fstoch fitness function, fit.stoch.24.4,
fit.stoch.24.3; (bottom) two organisms from the fbase runs, fit.base.16.6 and fit.base.16.1

There were several general trends in evolved solutions for each fitness function. For the
fmat function, all high fitness population members somewhat resembled the exemplar, a simple
triangle shaped truss. Organisms varied greatly, however, in the fstoch and fbase runs. For
the fstoch function, sparse pyramids were common; Also, there were many agents with thin, tall
upper sections and large bases. For the fbase function, some tall trusses with small, central bases
were found; Additionally, large pyramid trusses with sparse bases were also common. Figure 5.3
show exemplar population members illustrating these phenomena.

Also note the presence of “cheaters” in the trends pictured in Figure 5.3. For instance, the
fstoch truss shown on the left has a large and unnecessary base; Since the joints at which the
external loads are applied are chosen randomly for this fitness function, selecting joints near the
base helps maximize fitness in the general case by decreasing the probability that the tower will

57

Figure 5.4: Unusual organisms: (left) an organism notable for a lack of repetitive pattern, and use of
odd polygons, in what could have been a simple support; (middle) a sparse pyramid in which the second
highest support is completely unconnected to the first; (right) a truss which minimizes the number of
base joints without minimizing mass at the top, distributing weight asymmetrically.

Figure 5.5: Organplexity of a Deva 1 organism. Organism is shown at development times 0, 5, 10, 15,
20, 25, 30, and 34 (termination). Inset is the organplexity, as defined in Eq. 3.2. Top row shows the
cellular view, bottom the interpretation as a truss.

experience load. Or, for instance, consider the fbase truss on the right; This truss has grown a
full pyramid, a generally poor design, but then removed the joints at the base, thus achieving
a reasonably high fitness. As usual in Evolutionary Computation, fitness functions often have
unintended loopholes.

A final note about these trusses in general is their occasional “oddness” — it is both an
advantage and a drawback of Evolutionary Computation that evolution often finds solutions to
problems which do not readily resemble human-designed solutions. In our trusses, this is often
a result of a lack of right-left symmetry2 — in other cases, it takes the form of unusual (and
typically unnecessary) complexity in solving simple problems. Figure 5.4 shows several unusual
agents, that is, agents which are reasonably functional, but bearing designs unlikely to have
been created by an engineer.

Figure 5.5 shows the computation of organplexity for one organism in various stages of
development; One may see a slow increase in the complexity measure initially, due to undif-
ferentiated division, then faster increases as the organism grows larger. Interestingly, the peak
of organplexity does not occur at the end, but ten time steps before, reaching a maximum of
64.3, compared to the 54.5 value at termination. This may be a measurement of some of the
self-organization which is traditionally associated with a decrease in entropy.

In summary, we have presented a new model of AE, Deva 1. Deva 1 has been shown to
be capable of evolving plane trusses — that is, evolving designs of structure which are stable,
capable of effectively distributing external forces, and also meeting other constraints imposed by
a fitness function. We have further shown that the results found by evolution can be effectively
controlled through the choice of fitness function, although this is subject to the usual trappings

2It is expected that an addition to the fitness function could help induce symmetrical designs.

58

of fitness function design in evolutionary computation.

59

Chapter 6

Comparative Study

In this section we will perform a comparative analysis on several model-level strategies in the
design of Deva algorithms. We will do so by comparing the performance of the algorithms on the
previously defined tasks, that is, designing Plane Trusses to optimize one of our fitness functions.

Retrospectively, we can claim with good confidence to know the general form of the optimum
for the Plane Truss application using the fmat and flight fitness functions; This consists of two
diagonal beams supporting two or three high nodes; Either the form can consist of simply six (or
four or two for flight) beams forming the triangle shape, or consist of a collection of smaller beams
creating two supporting diagonal frames. There does not appear to be any significant difference
in fitness between the two, as what the more minimal model gains in decreased material usage
it loses in less effective distribution of pressure.

We will provide evidence that the optimum of a space is defined by the fitness function
and the phenotypic representation, and that there exists several AE models which will find this
optimum with varying degrees of efficacy and reliability; However, many model-level choices will
have the capacity to “sabotage” the discovery of this optimum.

Further, we will reinforce the idea that although selection acts on the space of phenotypes,
that genetic search operates on the level of genotype, and that, as such, design decisions at the
genotypic level matter greatly to the success of evolutionary search.

Finally, through our exploration of model-level mechanisms, we will evaluate the inclusion
of two regularities believed important for the canalization of development in AE systems: the
inheritance of cell specialization, which tends to encourage continuous and connected regions
of like cell types; and the use of simultaneous all-direction division, which forces a left-right
quasi-symmetrical form.

In general, our experiments will take the following form. Two sets of runs will be executed
for each model-level decision: A smaller set (with rc = 15, approximately) will have many runs
(approximately 30) so that a general trend can be reliably established; A larger set (with rc = 25,
approximately) will be run as well. Since the larger runs require much more computational
resources, fewer will be undertaken — the larger runs may be viewed as a means of ensuring the
trend discovered at the smaller size continues at larger sizes. Evolutionary runs are undertaken
until convergence can be reliably detected through visual inspection — usually 100 generations
will do. The genetic parameters have been chosen from our initial experiments with Deva

60

1, and used again for all trials in the section. Experimentation with these parameters was
not undertaken as our informal experimentation with the Deva 1 trials showed little variance
resulting from altering the values; Hence, we opted for the rather arbitrary re-use of original
values. These values, unless otherwise noted, are:

population size 200 init. pop. size 2000

prob. crossover 0.8 rate. elitism 0.01

prob. copy-mut. 0.05 prob. power-mut. 0.05

Other parameters, such as the choice of fitness and the cardinality of the transition function,
|φ|, vary from experiment to experiment.

6.1 Seed Experiments

An important distinction in models of AE is the use of cellular-growth models versus the use of an
initial static-sized mass of undifferentiated cells; The Deva models are obviously members of the
former category, while natural systems appear to exist in between — in natural embryogenesis,
an initial cleavage creates a blastula, which then begins to specialize and grow simultaneously.
Cellular growth models, however, can hope to have the initial cleavage as an emergent behaviour,
or seek to include it more explicitly. In this section, we explore the addition of an initial cleavage
to our system via a seed parameter. This seed consists of a single rule placed in the first (i.e.
highest priority) location of the genome, matching the empty neighbourhood, containing the
action “divide”, thus causing the first set of actions to be unspecialized division.

6.1.1 Experimental Set-up

Many trials of different sizes were run for both values of the useSeed parameter (The Seed
Trials). Data was collected for runs of size rc = 16, 24. The Seed Trials use the fbase fitness
function, and a value of 100 for |φ|. Twenty runs were executed with useSeed = true, then
again with useSeed = false — these runs are labelled us.x.y, where x is 1 if useSeed = true,
and y ∈ {0, .., 19}.

6.1.2 Data and Analysis

The simplest comparison of the us trials is a direct comparison of the fitness of the maximum
agents — since all were evolved using the fmat fitness function, this is a direct measure of the
effectiveness of the models. Such a comparison may be seen in Figure 6.1, where the mean
fitness of the twenty us.0 runs is contrasted against the mean fitness of the twenty us.1 runs. It
is evident that there exists a large initial advantage to the us.1 runs — in later generations this
advantage lessens, where final average fitness is within a standard deviation. However, there is
a clear improvement shown overall for the us.1 runs, with a smaller variance.

One possible cause for the difference in fitness between the two us trials was the proportion
of trivial trusses1 in each initial population. The occurrence of trivial organisms is common

1In this section, we use an older definition of trivial — less than five cells, or less than three cell types. This
accounts for the inflated numbers, relative to later trials.

61

Figure 6.1: Plot of fitness (y) versus generation (x). Mean fitness of the useSeed runs, us.0 runs:
(lighter) and us.1 runs (darker) — the bars indicate a single standard deviation.

in the Deva 1 model, typically comprising the majority of the population2. In the us.0 trial,
the initial population was 99% trivial (mean of 20 runs), compared with 95% for the us.1 trial.
However, this initial advantage soon disappeared, as the proportion of trivial agents soon settled
at approximately 60% for both trials. The initial advantage in the us.1 trial, allowed for a more
diverse initial population as fodder for the remaining genetic search, likely explaining the initial
fitness advantage.

In summary, we have empirically explored a model-level addition, the useSeed parameter, a
metaphor for the initial cleavage in real-world embryogeny. Relative to the task of designing a
stable, effective, tall truss with minimal material usage, the useSeed strategy has proven effective
— that is, inclusion of the seeded rules leads to an improvement in expected fitness generally,
and a decrease in the variance between runs, suggesting a greater probability of generating a
good truss design on a typical run.

6.2 Neighbourhood Experiments

It is not obvious which choice of neighbourhood description is ideal for the decision-making
required of a transition function. Here, we restrict our attention to rule-based (or pattern-
matching) transition functions, and explore several levels of description of cell neighbourhoods.
We are not interested in the size of the neighbourhood, which has already been explored in
the context of understanding Cellular Automata; Instead, we explore means of compressing the
description of these neighbourhoods, so as to limit the necessary representation size.

Our trade-off here is the amount of specificity in any particular neighbourhood description,
which we would like to minimize, versus the ability of a rule-based genome to intelligently make
decisions for growth. Given a neighbourhood of size 12 (see Appendix B for description), we
might include all relevant information by simply listing all cell types, as we do in Deva 3 ;
This leads to n12

c possible neighbourhoods, making, as we shall see, difficult demands on the
initialization necessary for a representative population.

Here, we explore two means of describing neighbourhoods in less detail, Deva 1 and Deva 2 —
we may view Deva 3 as retaining the largest amount of information regarding the neighbourhood,

2We are relatively unconcerned, since these trusses can usually be dismissed without significant processing —
hence, we simply use large population sizes.

62

followed by Deva 1, then finally Deva 2. Additionally, we explore the use of a “state” in
partitioning the DNA; That is, in some models, we allow the DNA to be partitioned on the
basis of the cell type of the querying cell. Hence, a cell of type “1” queries different sections of
the genome as does a cell of type “2”. In total, we consider five models, Deva 1.N, 1.Stateless,
2, 2.Stateless, and 3. More precise descriptions of the algorithms may be found in Sections B.2,
B.4, and B.5.

In this section, we use the flight fitness function, similar to fmat but with a substantially
lighter external load. For this function, it is possible to support the external load on a single
joint, with some additional buttressing. Global optimum appears to be either two triangles of
equal height, or a single point with some minimal buttressing — neither of the two substantially
outperforms the other.

6.2.1 Choice of |φ|

In this set of experiments, we explore a range of values for the parameter |φ| in various Deva
models. This is done both to illustrate the relation between the length of φ and obtainable
fitness, and also so as to choose the parameter intelligently for future experiments.

100 runs of 50 GA generations were undertaken for Deva models 1.N, 1.Stateless, 2, 2.State-
less, and 3. These trials used an rc value of 14, and had an initial population size of 1000. The
parameter |φ| was chosen independently, uniformly and randomly from the range {0, 400} for
each run.

Results of the runs are shown in Figure 6.2; These plots show the maximum fitness achieved
in the initial (random) population and after 50 generations, according to value of |φ|. For each,
a line of best fit is plotted, showing the general trend as determined by linear sum-of-square
analysis.

6.2.2 Comparative Neighbourhood Experiments

In this set of experiments, we explore the effects on evolution of our choice of the five models.
We do so by considering two sets of trials for different values of rc.

Experimental Set-up

30 runs of 150 GA generations were undertaken for Deva models 1.N, 1.Stateless, 2, 2.Stateless,
and 3 for rc = 14 and 20 runs of 100 GA generations with rc = 22. These runs are labelled
nbhd.x.y.z, where x is an rc value, y is a Deva model, and z is an index. These trials used the
flight fitness function.

The parameter |φ| was set according to model type, based on data from the previous section:
for Deva 1.N, |φ| = 300; for Deva 1.Stateless, |φ| = 150; for Deva 2, |φ| = 250; for Deva
2.Stateless, |φ| = 100; and for Deva 3, |φ| = 250.

Comparison of Neighbourhood Data

We plot the results of evolution in Figures 6.4, 6.5, and 6.6, and summarize data regarding the
maximum fitness in Table 6.1. We note that organisms approaching global optimum were found

63

Figure 6.2: Plot of the maximum fitness for various values of |φ| with fitness (y-axis) versus generation
(x-axis); (top left) Model Deva 1.N ; (top right) Model Deva 1.Stateless; (left) Model Deva 2 ; (right)
Model Deva 2.Stateless; (bottom) Model Deva 3 ;

in the nbhd.22.1.N and nbhd.22.2 trials, although not in any others. In Figure 6.3, we show the
maximum and closest-to-mean organisms of the nbhd.14 runs.

Our initial question involves the use of “states”; This through the Deva 1.N and Deva 2
experiments, illustrated in Figures 6.4 and 6.5, respectively. In the case of Deva 1.N, there is a
clear increase in expected maximum fitness, although not greater than one standard deviation,
and a significant decrease in variance. In the case of Deva 2, there is no obvious advantage of
either the original or the stateless model, save that Deva 2 seems to have a smaller variance in
the nbhd.22 runs.

Examining Figure 6.3, we note that the mean agents of the Deva 1.N and 2 models seem to
be closer to our expected global optimum, while the “stateless” models seem to be constructing

64

Table 6.1: Maximum and mean of maximum fitness agents from the final GA generation of the nbhd.14
and nbhd.22 runs.

rc = 14 rc = 22
Deva Type Max. Fit. Mean Fit.(s.d.) Max. Fit. Mean Fit. (s.d.)

1.N 0.420 0.334 (0.023) 0.566 0.427 (0.034)

1.Stateless 0.339 0.318 (0.013) 0.437 0.359 (0.129)

2 0.400 0.338 (0.028) 0.566 0.389 (0.113)

2.Stateless 0.389 0.333 (0.034) 0.491 0.399 (0.059)

3 0.352 0.305 (0.019) 0.415 0.376 (0.028)

Figure 6.3: Maximum fitness agents from the maximum (top) and closest to mean (bottom) runs for the
(left to right): Deva 1.N, 1.Stateless, 2.Stateless, 2 and 3 nbhd.14 trials.

tall, thin structures, known to be a less efficient strategy (for the similar fmat fitness function).
The best runs of the Deva 1.N and 2 models outperformed the best runs of the “stateless”
models, as did speed of evolution, suggesting that the “stateless” models were pursuing less
effective strategies in general.

Finally, we compare the Deva 1.N, Deva 2, and Deva 3 models, illustrated in Figure 6.6.
There does not appear to be any significant difference between Deva 1.N and Deva 2, save
that Deva 2 evolved more slowly in the nbhd.22 trials — this suggests that the difference in
description in these two models is largely insignificant. However, the Deva 3 model performed
far worse than the two previous models. Most likely, this is due to the tremendous size of the

Figure 6.4: Plot of mean of maximum fitness for the Deva 1.N and 1.Stateless runs.

65

Figure 6.5: Plot of mean of maximum fitness for the Deva 2 and 2.Stateless runs.

Figure 6.6: Plot of mean of maximum fitness for the Deva 1.N, Deva 2, and Deva 3 runs.

genetic search space, coupled with the precision of the description. If so, it is likely that a
smaller set of colours would lead to different results in this latter experiment.

For any given organism, we may enquire as to the number of used rules in the genome —
these are rules in the genome activated at least once during development, and hence serve as a
loose measure of the complexity of the decision-making mechanism. The number of used rules
tends to be a small fraction of the total number of rules, and tends towards a certain level
for each deva algorithm. Figure 6.7 shows the general trend for each of the runs, averaging
the values for each of the maximum fit agents. In this figure it can be seen that there exists
a general trend towards more rules for less descriptive Deva algorithms; For instance, there is
a clear increase in number of used rules for Deva 1.Stateless over Deva 1.N, as there is for
Deva 2.Stateless relative to Deva 2. Also, Deva 2 models tend to use more rules than Deva
1, which in turn use significantly more rules than the highly precise Deva 3 model. Since the
pattern-description occupied the majority of the space of any particular rule, the size of genetic
space is controlled largely through the specificity of these neighbourhood descriptions, no doubt
influencing the effectiveness of the GA.

It is likely that the additional rules used serve to provide a specificity which used to be
provided by the model; For instance, the Deva 2.Stateless algorithm often uses additional cell
specializations and rules to accomplish what is done by a simple specification of state in Deva
2, effectively breaking the genome into modular sub-genomes.

66

Figure 6.7: Mean number of rules used by the maximum fit agents for the nbhd.14 (top) and nbhd.22
(bottom) runs.

From this, we may conclude that the choice of neighbourhood description is not trivial. The
Deva 3 model, which, as the closest to general Cellular Automaton description, resembles several
models used in the literature — this model does not lead to the same quality of evolved organism
as the other models. The distinction between the descriptions used in Deva 1 and Deva 2 have
proven far less significant, however, showing that the performance differential resulting from this
choice need not be overly sensitive, that evolution is able to some degree to compensate, in this
case by selecting the number of used rules. All of these results are likely highly dependant on
the number of cell types chosen.

Additionally, in nearly all examined cases, there was a clear preference for the specification
of “states” in expected best run if not mean, probably reproducible by any model which allows
the genome to be partitioned into exclusive sub-genomes selected by cell state.

67

Figure 6.8: Plot of the maximum fitness for various values of |φ| with fitness (y-axis) versus generation
(x-axis); (left) Model Deva 1.N ; (right) Model Deva 1.Dir.

6.3 Division Experiments

In this section, we will continue to explore the Deva 1 model in particular; This choice as it was
most capable of maximizing fitness in previous experiments. However, in this case, we consider
several variants, varying on the basis of the action list chosen. As was already implied, but not
formally explored, it is known that minor modifications of the action list may improve overall
evolutionary performance (hence, our concentration on Deva 1.N rather than Deva 1).

We will consider several models, initially described in Section 4.2.2; These models include:

• Deva 1.N, our original model using the best free location algorithm for choice of direction.

• Deva 1.Dir, where directions are specified directly by the genome.

• Deva 1.Clockwise, where the direction chosen is a simple, heavily biased function.

• Deva 1.AllWay, where division occurs in all four directions simultaneously.

6.3.1 Choice of |φ|

We do not expect significant difference between the choice of |φ| for Deva 1.Clockwise and Deva
1.AllWay relative to Deva 1.N for the reason that the “divide” actions in each play the same
roles; However, the Deva 1.Dir model is a sufficient divergence that we re-run the experiment for
choice of |φ|, since the number of “divide” commands will likely need to be higher. These runs
both explore the Deva 1.Dir model, and solidify our understanding for the Deva 1.N model.

500 runs of 100 GA generations were undertaken for Deva models 1.N, and 1.Dir. We used
an initial population size of 1000, and let rc = 12. The parameter |φ| was chosen independently,
uniformly and randomly from the range {0, 1000} for each run.

Results of the runs are shown in Figure 6.8; These plots show the maximum fitness achieved
in the initial (random) population and after 50 generations, according to value of |φ|. For each,
a 4-term polynomial of best fit is plotted, showing the general trend as determined by sum-
of-square analysis. A 4-term polynomial was chosen as the Deva 1.Dir trials appeared to be
bi-modal.

As in initial experiments, we select |φ| = 200 for Deva 1.N, and hence, our other action
models; Further, we select |φ| = 800 for Deva 1.Dir. We also note that variance in the latter
runs is significantly higher than in the former.

68

Figure 6.9: Plot of mean of maximum fitness for the Deva 1.N, 1.Clockwise, 1.Dir and 1.Allway runs.

Table 6.2: Maximum and mean of maximum fitness agents from the final GA generation of the div.14
and div.22 runs.

rc = 14 rc = 22
Deva Type Max. Fit. Mean Fit.(s.d.) Max. Fit. Mean Fit. (s.d.)

1.N 0.317 0.249 (0.022) 0.357 0.319 (0.016)

1.Dir 0.287 0.214 (0.046) 0.356 0.301 (0.030)

1.Clockwise 0.224 0.194 (0.012) 0.286 0.234 (0.019)

1.AllWay 0.361 0.301 (0.045) 0.475 0.413 (0.064)

6.3.2 Division Experiments

The division trials are labelled div.x.y.z, where: x is an rc value, either 14 or 22; y is a Deva
Model, one of Deva 1.N, 1.Clockwise, 1.Dir or 1.Allway ; and z is an index, between 0 and 29
for rc = 14, or between 0 and 19 for rc = 22. In these experiments we used the fitness function
fmat. |φ| was set according to the values specified above.

6.3.3 Comparison of Division Data

We plot the result of evolution in Figure 6.9; The maximum and mean of the fitness of the best
agent in GA generation 100 is listed in Table 6.2 for each division type. In terms of overall
performance, as measured by the maximum fitness agent at generation 100, there was a clear
separation between the div runs, moreso than in other comparative experiments. The best
performance was observed in the div.Allway runs, which outperformed the next best division
type by a full standard deviation in both rc settings. This was followed by the div.1.N runs,
then the div.Dir runs, with the lowest performing runs being the div.Clockwise.

Figure 6.10 show exemplar agents from the div.14 runs, both the best organism from the
maximum fitness run, and the best organism from the run that was closest in performance to
the mean.

The performance of Deva 1.Clockwise was unsurprisingly poor; Unsurprisingly, as the method
for location selection was quite arbitrary, with a strong bias towards the left. Organisms evolved
through Deva 1.Clockwise had a tendency to resemble large groups of identical beams and joints
leaning left, of lesser height than other trusses from these experiments; The decrease in height
was due to the left-leaning divisions, which used up resources prior to growth encouraging height.

69

Figure 6.10: Maximum fitness agents from the maximum (top) and closest to mean (bottom) runs for
the (left to right): Deva 1.N, 1.Clockwise, 1.Dir and 1.Allway for the div.14 trials. The maximum and
mean organisms for the 1.Dir, along with the mean agents for the 1.Clockwise and the 1.AllWay runs
were stable, but not capable of supporting the applied external load.

The Deva 1.Dir model has a strong tendency to become stuck in a local optimum. Nearly
all discovered trusses consisted of very tall and thin structures, which while stable, cannot
support the applied external load. These trusses seem to maximize the height, material usage
and stability factors of the fitness function very quickly, but cannot, from this stage, evolve into
load-bearing trusses. Hence, the allowance of full genetic control in the division operator seems
to be a hindrance, while the tyranny of a pre-specified procedure for cell growth, such as best
free location or all-way forces a more robust approach.

The Deva 1.AllWay model exploits a propensity for bilateral symmetry (quasi-symmetry,
that is, see Appendix B.3.3). That is, in this simple Plane Truss application, there does not
appear to be any advantage to having different structures over the x = 0 axis, meaning that the
typical Deva evolution spends unnecessary time designing both the right and the left halves. The
growth of Deva 1.AllWay organisms are always quasi-symmetric, which require less specification
at the genomic level, allowing for a faster and more reliable evolution. Hence, the Deva 1.AllWay
model is capable of successfully exploiting a useful regularity on the space of Plane Trusses.

6.4 Gene-based Specialization

In this section we explore the use of an alternate form of specialization, one more closely related
to that found in morphogen-based experiments. In the Deva 4 models, we have removed much
of the specificity of the action set, replacing the highly specified colour-specialization commands
with more continuous gene-based differentiations.

6.4.1 Experimental Set-up

30 runs of 100 GA generations were undertaken for each of Deva models 1.N, 2, 4.CellType, and
4.GeneType with rc = 15, and 10 with rc = 25. In these experiments, we let |φ| = 250, and

70

Figure 6.11: Plot of mean of maximum fitness for the gb.15 runs (left) and the gb.25 runs (right)

used the fitness function fmat. The runs were labelled gb.rc.x.y, where x is a Deva model and y

an index.

6.4.2 Data and Analysis

Mean of maximum fitness is plotted in Figure 6.11. Maximums and means are listed in Table
6.3. The mean of number of used rules for maximum fit agents is plotted in Figure 6.12. The
performance of the Deva 4.GeneType was slightly better than that of Deva 1 and 2, although
within a single standard deviation of both results. The performance of Deva 4.CellType was
worse than all others, falling below that of Deva 4.GeneType in both absolute fitness, and
speed towards convergence; Again, the results were reasonably close, less than a single standard
deviation of spread. Further, these trends were not continued in the larger runs, where it appears
that Deva 4.GeneType does not outperform the other models at all.

Still, there does appear to be some preference for Deva 4.GeneType over Deva 4.CellType;
One possibility is that the use of gene-based description in both the action specification and the
neighbourhood description makes it easier to borrow genetic material from one section of the
genome and copy it successfully to another, as through crossover or copy-mutation.

Comparing the number of used rules between the models, we see that it is likely that evolution
is adapting to the model at hand. In the case of Deva 1.N and Deva 4.CellType, whose genomic
structure is nearly identical save for the action specifications, we see a clear increase in the
number of rule specifications for the Deva 4 model; The same phenomenon may be seen for the
comparison between the Deva 2 and the Deva 4.GeneType models. Hence, it seems that the
Deva 4 models compensate for less capacity for specification of cell specialization in the genome
by finding additional rules to make up the difference.

All in all, these results are quite weak, and there does not appear to be any substantial
reason to prefer or eschew Deva 4 relative to other models; It seems that evolution can typically
adapt to accommodate this change.

The most likely explanation for the failure of the gene-based specialization experiments to
produce improvements is as follows: The pattern-based Deva style of representation requires
significantly more information to describe an action than a pattern. In the case of colour-based
descriptions (as in Deva 1.N and Deva 4.CellType), the number of “slots” for description was

71

Figure 6.12: Plot of mean of number of rules used for the gb.15 runs (left) and the gb.25 runs (right)

Table 6.3: Maximum and mean of maximum fitness agents from the final GA generation of the gb.15
and gb.25 runs.

rc = 15 rc = 25
Deva Type Max. Fit. Mean Fit.(s.d.) Max. Fit. Mean Fit. (s.d.)

4.GeneType 0.338 0.282 (0.048) 0.418 0.298 (0.081)

4.CellType 0.338 0.238 (0.073) 0.395 0.269 (0.091)

1.N 0.337 0.258 (0.021) 0.368 0.339 (0.091)

2 0.340 0.260 (0.026) 0.362 0.322 (0.067)

|C| = 33, while the number of slots for gene-based description (Deva 2 and Deva 4.GeneType)
was six. This compared with a single slot required to store the action — hence, the size of
genotypic space was far more influenced through the descriptions of patterns than through
resulting actions. Unsurprisingly, the genomic complexity (as measured by the number of active
rules) was controlled by the neighbourhood descriptions rather than the actions; By sacrificing
the specificity of the actions, we gained little in terms of decreasing the size of the genomic
space, but sacrificed much in terms of control of phenotypic growth.

6.5 Inheritance of Cell Specialization

In this section we explore the inheritance of cell specialization in division. As previously men-
tioned, this inheritance is an important mechanism in development, believed responsible for a
regularity in developed form which serves as a canalization of development.

6.5.1 Experimental Set-up

30 runs of 100 GA generations were undertaken for each of Deva models 1.N, 2, 1.NoInher, and
2.NoInher with rc = 15, and 10 with rc = 25 (data for Deva 1.N and 2 re-used from previous
experiments). In these trials, we let |φ| = 250, and the fmat fitness function was used. We
labelled these runs inher.rc.x.y, where x is a Deva model and y is an index.

72

Figure 6.13: Plot of mean of maximum fitness for the inher.15 runs (left) and the inher.25 runs (right)

Table 6.4: Maximum and mean of maximum fitness agents from the final GA generation of the inher.15
and inher.25 runs.

rc = 15 rc = 25
Deva Type Max. Fit. Mean Fit.(s.d.) Max. Fit. Mean Fit. (s.d.)

1.N 0.337 0.258 (0.021) 0.368 0.339 (0.091)

1.NoInher 0.340 0.266 (0.029) 0.392 0.340 (0.085)

2 0.340 0.260 (0.026) 0.362 0.322 (0.067)

2.NoInher 0.340 0.268 (0.035) 0.369 0.337 (0.082)

6.5.2 Data and Analysis

Mean of maximum fitness is plotted in Figure 6.13. Maximums and means are listed in Table
6.4. All runs converge to approximately the same value, all within a single standard deviation of
each other; Further, this trend continues through all of evolution, so that no algorithm appears
significantly more efficient than any other.

Surprisingly, we found no advantage to the automatic inheritance of cell type by child cells.
Note that this is quite a break from several other experiments in which inheritance of cell
specialization is posited as a significant factor contributing to the beneficial regularities of AE
systems. It seems that in the example of Deva growth and Plane Trusses, totempotic cell division
is equally efficient to the typical AE choice of automatic inheritance.

This does not necessarily discount the regularity imposed by automated specialization,
though. Given that organisms still appear to be continuous regions of collections of like cells,
it is likely that evolution can, in this case, simply quickly learn to perform specialization to the
same type as neighbouring cells, thus achieving a similar regularity as would be gained from
inheritance.

6.6 Summary of Results

In general, we have not seen improvement on the overall optimum found by the system relative
to the best of our original Deva 1 experiments; Indeed, it is likely the optimum is defined by the
phenotypic representation and fitness function, and that there are several good models capable

73

of finding it. We have significant evidence, however, that choice of Deva model can affect the
speed and reliability of discovery of this optimum, and that poor model-level decisions can cause
a system to get stuck at local optima.

Further, we have explored several model-level decisions, with a variety of results, detailed
below:

• We have explored the inclusion of an initial cleavage stage, potentially recovering a middle
ground between models of cellular growth and models involving the differentiation of a
mass of unspecialized cells. This initial cleavage stage was shown to improve the reliability
of the algorithm overall, reducing the number of trivial agents.

• We explored the description of neighbourhood used, and showed that although some adap-
tation is present in successful descriptions, a poor choice will severely limit the capacity
for evolution. In this example, we found a wide array of behaviours based on the relatively
simple decision of how precisely to describe a cell’s neighbourhood. The precise description
sabotaged evolution entirely, while evolution seemed capable of adapting to other changes
in genomic cardinality; This suggests that the evolutionary engine was bogged down by the
size of the search space, further implying that different choices of domain of application
(and hence, different genomic dimensionalities) will have substantively different results.

• We explored several options for cell division, finding ways to abstract the division of
cells onto a simple lattice. Here, we discovered a strong preference for a quasi-symmetric
division operator, and good results from our best free location algorithm, while other
choices, including full genetic control, were stuck in local optima.

• We explored the use of gene-based specialization, as opposed to the more specific cell-based
specialization. In this case, results were too weak to specify any particular preference;
Again, it appears that evolution has found a means to adapt to the model-level change
through increasing the number of used rules in the genome.

• Finally, we found no particular difference in the inclusion of a mechanism for the inher-
itance of cell specialization; This is somewhat of a surprise, since this is a mechanism
identified previously as a key factor in the development of an important biological regular-
ity. It is likely that in this case, evolution simply found a simple way to achieve the same
result though additional cell specializations.

We see reinforcement of two general trends in the results above: Firstly, that the canalization
of development found in AE systems is likely due to the exploitation of regularities formed by
model-level mechanisms, although that the appropriateness of those regularities likely depends
on the domain of application; And secondly, the need to view evolution as selecting on the space
of phenotypes, but acting on the space of genotypes.

The former point, the exploitation of regularities, was reinforced by the experiments in di-
vision mechanisms; There, one model, through exploiting a phenotypic symmetry, managed to
find solutions far more efficiently and reliably than the all other explored models. The appli-
cability of left-right symmetry is, of course, a feature of this particular domain of application,
and might not exist in other problems. The second explored mechanism, inheritance of cell
specialization, proved impotent, but likely because evolution found a way to achieve a similar
regularity through alternate means.

74

The latter point, the importance of viewing evolution as selecting phenotypes but acting
on genotypes, is evident firstly in the definition of the optimum by the choice of phenotypic
representation and fitness function, contrasted to the richness of behaviour found in genetic
changes. The model-level mechanisms which affected the actions of an organism had a tendency
to be compensated for by evolution, as in the inheritance and the gene-based trials; No doubt
this is due to the relative small size of genomic representation of the actions. In contrast, the
neighbourhood descriptions proved potentially fatal to evolution, likely due to their dominance
of the genomic space.

This final point is especially important when considering the evaluation of model-level de-
cisions in AE experiments; One cannot by default assume that a result which holds in a low-
dimensional problem will hold also in a higher-dimensional space. It is often the case in models
of AE that the size of the genomic representation is exponential in the number of phenotypic
primitives, as in the case of morphogenic models and Cellular Automata, which, of course, means
that many models defined on two- or three-colour problems will simply be intractable for other
domains of application.

75

Chapter 7

Environment Experiments

In this chapter, we explore the use of environment as a guide for embryogenesis. This is achieved
through the expression of our phenotypes in a variety of developmental spaces, controlling their
growth through their geometric shape.

Inspired by earlier discussion regarding the role of environment in canalizing (channelling)
development, here we attempt to first use the environment as a spatial constraint (to an extent,
replacing the use of a fitness function as a selector of overall morphological design), and sec-
ond, to use this constraint not as a final evaluation, but instead as a guiding force during the
developmental process.

Following this is a set of experiments devoted to studying the re-growth of genomes evolved
in some environment, transplanted into another. As a metaphor for re-growth, imagine the
following situation: A scientist finds a recently impregnated Bonobo monkey, whose womb
contains a single fertilized cell, ready to begin growing into a new Bonobo child. The scientist
removes this zygote from the Bonobo monkey, and transplants it into the womb of, say, a
Chimpanzee. The scientist then studies the development of this child in the Chimp womb.
Similarly, we select genomes of trusses evolved in some environment, then allow them to re-
develop in a different environment, and observe the results in terms of maximization of a fitness
function.

The re-growth experiments take two forms: Firstly, we consider the re-growth of genomes
under different phenotypic sizes. That is, we take a genome evolved under the assumption that
growth would continue until a height of 30 m, and re-grow the truss to a height of 40 m; Secondly,
we re-grow genomes in different environments altogether.

The purpose of the re-growth experiments is to measure the utility of genomes when trans-
lated into phenotypes under perturbed environments; This is done for two reasons: Firstly,
to explore the possibility that good developmental patterns exist in several contexts, somewhat
like the genetic toolkit currently being explored in real-world Embryology; Secondly, to reinforce
the claim that Artificial Embryogeny is a robust and perturbation-resistant technique for auto-
mated design, and that good genomes may be re-used in new environments without repeating
the evolutionary optimization.

76

Figure 7.1: Plot of the mean of maximum fitness for the sets of runs in each environment: fitness (y-axis)
versus generation (x-axis).

7.1 Environment as a Spatial Constraint

7.1.1 Experimental Set-up

80 runs of 100 GA generations were undertaken, grouped together by environment. These runs
will be referred to as r.env.x, where env is the name of the environment, and x ∈ {0, .., 9} is an
index. Parameter settings for the trials are:

population size 100 init. pop. size 1000

prob. crossover 0.8 rate. elitism 0.01

prob. copy-mut. 0.05 prob. power-mut. 0.05

rc 40 |φ| 200

Unless otherwise noted, these parameters are used for all experiments, including re-growth.

7.1.2 Initial Experiments

In all environments, stable agents capable of supporting the external load were found in nearly
all trials, save the zigzag-s environment, where only one trial yielded a non-trivial truss capable
of supporting the external load. The failure of evolution of a tall, load-bearing truss in the
zigzag-s environment is a mild disappointment, since it is possible (for a human engineer) to
design a truss capable of reaching non-trivial height for this environment. The relative success
of the GA, as measured by maximum fitness, varied substantially between runs; A plot of the
mean of the maximum fitness for each set of runs may be seen in Figure 7.1. Some examples of
trusses from these runs are shown in Figure 7.2.

Speaking informally, there seems to exist an inverse relation between the maximum fitness
achieved and both of: (a) the complexity of the environment (as measured by, say, number of
corners), and (b) the amount of space in the path for growth. For instance, both thick and thin
do well due to both a wide path and low complexity — the failure of zigzag-s is likely due to
both high complexity, and a too-narrow path vertically (only three meters of space for vertical
connections).

77

Figure 7.2: Examples of trusses evolved in the environments: (left to right) thin, bulbs, swerve-r, and
bulb.

7.2 Re-use of Genetic Material

In the following experiments, we explore the re-use of genetic material in an environment other
than the one for which it was evolved.

7.2.1 Re-growth at Different Sizes

An additional set of runs of the zigzag-l environment were undertaken, ten with rc = 40, and an
additional ten with rc = 30; We shall refer to these sets as r.zigzag-l-30 and r.zigzag-s-40. These
sets afford us opportunity to view the re-growth of populations of agents at a different size of
environment then the one in which they were evolved. Each of the populations from the above
runs were re-grown using the alternate value of rc; By re-grown, we mean that the population
at GA generation 100 was re-developed and re-evaluated using the new value of rc. The results
are summarized in Figure 7.4; Additionally, data for the expected performance of randomly
generated genomes (over 2000 genomes) are also plotted. An example of the re-growth of the
maximum fit genome from generation 100 of run r.zigzag-l-30.3 is shown in Figure 7.3.

Is it evident from Figure 7.4 that genomes evolved in a different size perform better, in
terms of fitness and proportion of stable agents, than random genomes — the comparison for
the rc = 30 zigzag-l trials was an expected maximum fitness of 0.225 versus 0.303, or 135%
performance for the latter (these values encompassing the difference between finding a load-
bearing truss and not); Similar results are true for mean and proportion in both the rc = 30
and rc = 40 experiments. A more meaningful comparison is between the evaluation of genomes
evolved at the present size, and those transplanted from a different size. In the rc = 30 trials,
the original agents have an expected maximum fitness of approximately 0.341 versus 0.303 for
the transplanted agents, meaning 113% the performance for the original. In the rc = 40 trials,
results are much closer: an expected maximum fitness of 0.293 for the original, versus 0.277 for
the transplanted genomes, or 105% the performance for the original. Indeed, in the rc = 40
case, the mean fitness of proportion of stable agents was higher for the transplanted genomes
than the originals.

78

Figure 7.3: Re-growth of the maximum fit genome from generation 100 of the run run.zigzag-l-30.3 with
(left to right) rc = 30 (original), rc = 40 and rc = 60.

Figure 7.4: Selected statistics from random genomes and the r.zigzag-l-30 and r.zigzag-l-40 runs, both
originals and re-growth at rc = 30, 40.

7.2.2 Re-growth in Different Environments

For the r.thick and r.bulb runs from Section 7.1.2, the maximum fitness population (at GA
generation 100) was chosen for further experimentation in different environments; These two
particular environments were chosen as examples of a simple and a complex environment, by
the informal standard of number of corners. The re-growth experiments were accomplished by
re-developing the population members using the same parameters, but a different environment.
Mean data from these runs is summarized in Figure 7.6, compared to both the maximum fitness
of a set of 2000 random genomes, and against the mean maximum fitness obtained from the
initial runs in Section 7.1.2. A more detailed view of the data may be seen in Tables 7.1 and
7.2.

Performance of the first set, the r.thick trials, showed some improvement over the maximum

79

Figure 7.5: Growth of the maximum fit genome from generation 100 of the run run.bulb.1 in (left) its
original environment and (right) re-grown in the swerve-l environment.

Figure 7.6: Selected statistics from random genomes and the r.thick and r.bulb runs, both originals and
re-growth in a variety of environments

fitness of the random set of agents in most environments. In five out of eight environments,
the fitness of re-grown genomes exceeded that of the best of the set of 2000 random genomes.
Performance of the second set, the r.bulb trials, was more disappointing overall, with most
mean values falling below the maximum fitness found during the search of random genomes.
This is due largely to several genomes, particularly those from runs with indices 1, 2 and 4,
who performed very poorly in any foreign environment — likely, the relative complexity of the
bulb environment invites over-specialization during evolution. One such unsuccessful re-growth
is shown in Figure 7.5. However, there exist several genomes which have performed admirably
in all environments, in some cases exceeding the mean maximum fitness of the original sets; One
such example is the maximum fitness agent from run r.bulb.2, hereafter “Zelig”1, illustrated in
Figure 7.7.

1After the Woody Allen character who would adapt to any social environment.

Table 7.1: Maximum fitness from the re-growth of the run.thick trials (maximum fit agent at generation
100) in different environments.

orig. pop. thin thick swerve-l swerve-r bulb bulbs zigzag-s zigzag-l nothing

r.thick.0 0.463 0.545 0.358 0.279 0.344 0.327 0.176 0.255 0.073
r.thick.1 0.399 0.557 0.311 0.281 0.281 0.323 0.224 0.136 0.509
r.thick.2 0.460 0.522 0.232 0.279 0.345 0.342 0.240 0.206 0.525
r.thick.3 0.524 0.536 0.234 0.234 0.290 0.251 0.263 0.196 0.073
r.thick.4 0.468 0.567 0.231 0.231 0.341 0.303 0.241 0.114 0.073
r.thick.5 0.300 0.507 0.273 0.241 0.335 0.313 0.248 0.195 0.514
r.thick.6 0.510 0.548 0.235 0.319 0.292 0.179 0.263 0.115 0.544
r.thick.7 0.495 0.567 0.238 0.239 0.297 0.302 0.193 0.123 0.073
r.thick.8 0.384 0.520 0.313 0.074 0.338 0.275 0.282 0.189 0.502
r.thick.9 0.299 0.507 0.256 0.240 0.335 0.178 0.235 0.208 0.528

80

Table 7.2: Maximum fitness from the re-growth of the run.bulb trials (maximum fit agent at generation
100) in different environments.

orig. pop. thin thick swerve-l swerve-r bulb bulbs zigzag-s zigzag-l nothing

r.bulb.0 0.345 0.489 0.049 0.072 0.403 0.052 0.134 0.052 0.544
r.bulb.1 0.090 0.076 0.053 0.072 0.404 0.043 0.061 0.052 0.073
r.bulb.2 0.442 0.493 0.324 0.293 0.424 0.342 0.048 0.253 0.552
r.bulb.3 0.350 0.457 0.055 0.293 0.412 0.049 0.064 0.055 0.555
r.bulb.4 0.349 0.071 0.049 0.072 0.395 0.199 0.249 0.053 0.545
r.bulb.5 0.357 0.470 0.226 0.074 0.422 0.051 0.255 0.048 0.562
r.bulb.6 0.083 0.074 0.057 0.297 0.395 0.297 0.060 0.187 0.071
r.bulb.7 0.086 0.485 0.225 0.283 0.408 0.044 0.245 0.218 0.544
r.bulb.8 0.347 0.071 0.336 0.072 0.389 0.259 0.248 0.214 0.545
r.bulb.9 0.433 0.420 0.326 0.290 0.424 0.225 0.134 0.227 0.559

Figure 7.7: Re-growth of the maximum fit genome from generation 100 of the run run.bulb.2 (Zelig) in
all environments.

7.2.3 Zelig

The maximum fit agent from the run r.bulb.2, named Zelig, is here explored further. Zelig
has been chosen not only for its ability to grow in many environments, but also for having a
relatively short and simple genome (in terms of the number of rules activated during growth as
a portion of |φ|). We aim to informally describe Zelig’s developmental dynamics. Note that the
name Zelig points to the genome, not the phenotype, so Zelig may be instantiated several times
under the same name (though we would probably not recommend this nomenclature for human
twins).

A snapshot of Zelig’s growth in the nothing environment may be seen in Figure 7.8; From
these (and other) images, it is possible to loosely describe Zelig’s growth strategy:

• Grow a maximal boundary that expands to fit any available space.

• Any cells on the boundary remain where they are.

81

Figure 7.8: Growth of Zelig in the nothing environment at times (left to right): 0, 5, 10, 15, 20, 25, 30,
and a portion of the final trimmed truss at time 84.

Figure 7.9: A visualization of the activated portions of the Zelig genome, activation from growth in the
bulb environment.

• Cells on the interior get thinned out.

• The interplay between division and specialization leaves rough boundaries at times.

A more detailed description of Zelig’s dynamics is, of course, available from the genome.
In considering the genome, we need only consider activated rules, that is, rules which returned
actions during the developmental process; In Zelig’s case, this was a relatively small eight. A
visualization of those eight rules is shown in Figure 7.9, along with their activation frequency.
Below, we provide a natural language description of those rules, described not as pattern-
matchers, but instead as approximate rules. In brackets is the frequency of activation, as a
portion of all activations in the developmental process.

• Rule 0 (0.05): If I am of type 1, and my neighbourhood is approximately empty, then
“divide”

• Rule 170 (0.00): If I am of type 1, and my neighbourhood contains cells of type 1 and 16,
then “divide”

• Rule 103 (0.04): If I am of type 1, and my neighbourhood contains many cells of type 1,
then “specialize” to type 8.

• Rule 77 (0.03): If I am of type 8, then specialize to type 16

• Rule 74 (0.02): If I am of type 16, and my neighbourhood contains many cells of type 1,
but few cells of type 8 or 16, then do “nothing”.

• Rule 122 (0.86): If I am of type 16, and my neighbourhood contains no cells of type 1,
and a small number of cells of type 8 and 16, then do “nothing”

• Rule 11 (0.00): If I am of type 16, and my neighbourhood has a large number of cells of
type 16, but no cells of type 1 or 8, then “die”.

A detailed description of the developmental dynamics in the thin environment, parsed in terms
of the above rules, may be seen in Figure 7.10.

82

Figure 7.10: A detailed description of the growth of Zelig in the thin environment.

7.3 Summary

The primary purpose of these experiments has been to show that environment may be used as
a spatial constraint in the design of structural form, using AE. Indeed, for several diverse and
non-trivial environments, this has been shown to be the case.

Further, we explored, through additional experiments, the possibility of re-use of genomes
from a particular environment in different settings. This is both a means of evaluating the general
claim that AE growth is robust and resistant to environmental perturbations, and also a means
of demonstrating that AE genomes may be re-used in different contexts without re-running the
evolutionary process.

The experiments involving re-growth at different values of rc showed that, in the zigzag-l
environment, the fitness of re-grown agents far exceeds that of random genomes, and approaches
the fitness of genomes evolved at the new size in question. Although we must hesitate before
extending these results to all sizes and environments, it seems likely that genomes evolved at
some particular size have utility when re-grown at different sizes.

83

The re-growth experiments involving different environments were less successful as those
involving phenotypic size; This was largely due to several genomes which failed to perform
well in any environment other than the one in which they evolved, suggesting a measure of
over-specialization. In these final experiments, however, a set of genomes capable of developing
into high fitness trusses in nearly any environment were found; These latter agents suggest the
existence of a general toolkit which might be useful for a wide class of AE design problems.
Analysis of these genomes may, in the future, help to design better algorithms for AE.

The experiments in re-growth generally raise the possibility that genomes evolved via AE
may be re-used in slightly different contexts, notably contexts of different phenotypic size or
different environment, without significant re-design; This strengthens the claim that growth
through AE in general is a robust and perturbation-resistant means of automated design.

84

Chapter 8

Conclusions

Artificial Embryogeny is a new field, indeed, one with a great deal of potential, but also one
which requires a great deal of work. Fundamental concepts are referred to only vaguely, and
often contradictory notions masquerade under the same terminology. Indeed, a crisp definition
of the field has thus far eluded practitioners, and there is no clear distinction between AE
and the nascent fields of Evolvable Hardware or Genetic Programming, nor any explanation of
why evolution should be used at all. Add to this the existence of a plethora of models, and
no standard test problems save ones which could be solved entirely trivially through non-AE
techniques.

It has been our aim to help formalize some of the fundamental theoretical concepts that
govern AE, as opposed to other sub-genres of Machine Learning. One of the concepts we have
helped to elucidate is that of “complexity”, not a single term, but in fact, a family. Relying solely
on implicit definition of this term has allowed AE practitioners to näıvely assume that evolution
functions via a process of complexification, a highly controversial notion in the world of Biology.
A second, and related, fundamental concept is the description of AE through concentration on
the dynamical systems aspect. This concentration immediately communicates to the practitioner
that the resulting pattern is not simply the result of a genome, but also contains information
provided by both the dynamic, and the environment in which the dynamic is instantiated. To
paraphrase Peter Grogono, a dinosaur genome is not sufficient to create a new dinosaur — one
also needs a mother.

Initially our concentration was on measures of complexity for AE; We have proposed several
new measures, including organplexity, environmental Kolmogorov complexity, and funcplexity,
these measures encapsulating organismal, genomic, and functional notions respectively. These
measures were applied to a highly simplified model of AE, the Terminating Cellular Automaton,
where the results were contrasted for some small examples. It was readily shown that those
measures do not agree with each other, nor particularly with other existing measures, reinforcing
the notion that there does not exist any single notion of complexity. To evaluate a theory such
as complexification, it would be necessary to first choose the appropriate measure, then perform
the requisite experiments. Further, these new measures of complexity accept the environment
and the dynamic “for free”, that is, they use a genomic measure which discounts any information
added by dynamics and environment. To summarize this reasoning, we note that a practitioner

85

should not be interested in the information that a genome contains about its environment, but
instead, on the capacity of such a genome to exploit the information provided by the environment
during development. It is through this means that we suspect the paltry thirty thousand genes
of the human genome can encode the positional information of a hundred trillion cells.

Next, our concentration turned to the imposition of a notion of meaning to our experi-
ments; Rather than utilize simple abstract and easily solved problems for experimentation, we
chose to define a non-trivial domain of application by which the developmental stage could be
meaningfully evaluated. A model from Structural Design was chosen, providing the discipline-
independent notions of stability and distribution of pressure; In implementing this domain of
application, a high-dimensional phenotypic space was required (one with many cell types and an
intricate connectivity), as we suspect that it would be for any sufficiently interesting problem.
This forced us to consider the problem of scaling up, and whether our results would apply for a
problem of complexity approaching the ambitions of our discipline.

The Deva family was introduced as a modular family of evolvable AE algorithms. It was
shown that some Deva algorithms have the capacity to successfully evolve high fitness trusses,
that is, trusses capable of reaching tall heights while supporting external load. It was shown
that different objective functions push Machine Learning to different but interesting attractors;
But, as is typical in Evolutionary Computation, it was seen that there existed a tendency for
evolution to find “loopholes”, sometimes maximizing fitness in unintended ways.

Given our external methodology for evaluation, we have a means of evaluating organisms.
This gives us the means to evaluate model-level strategies in the context of the evolution of
structural form, through empirical comparative study. We did so, evaluating many different
model-level decisions, using our fitness functions as overall measures of success. Generally, we
found that the optimum was defined by the phenotypic representation and the fitness function,
and that the model-level decisions could only improve efficiency or sabotage evolution relative to
our original models. However, we discovered that some model-level decisions would greatly affect
the efficiency and reliability of evolution. We reinforced the notion that low-level mechanisms can
create exploitable phenotypic regularities, as was the case with quasi-symmetry; We also showed
that those regularities can be achieved through other means as well, as was the case with the
inheritance of cell specialization. And finally, we reinforced the notion that evolutionary search
selects at the phenotypic level, but operates on the genomic level: simplifications which had
little impact on the genotypic space were of little value (action-based changes), while decisions
which had great impact on genotypic space were of paramount importance (neighbourhood-based
changes).

Finally, we further explored the use of environment as a means of constraining the growth of
an organism; Not only do we aim for a constraint here, but also at the “fruitful channelling” that
characterizes biological growth, which allows the dynamic to exploit environmental information
while expressing a phenotype. Firstly, we showed that organisms may be evolved in a variety
of geometric environments, allowing for precise constraints which would be difficult to achieve
through a fitness function; Secondly, and more interestingly, we showed that organisms evolved
in particular environments could be re-grown at different phenotypic sizes, and in different
environments, without having been selected to do so. This suggests that some genomes codified
programs which used a great deal of feedback from their environment in order to grow successful

86

designs (although others were overspecialized to the environment in which they evolved). We
analyzed one such adaptable organism, Zelig, and discovered that its program was shorter than
average, and its strategy relatively understandable.

Theories such as complexification tell us that we wish to constantly increase genomic com-
plexity in order to increase phenotypic complexity; However, there exist a plethora of biological
examples which demonstrate that this need not necessarily be the case, that genetic material
often radically changes its role during evolution without significant genetic change. It is our
belief that genomic measures like eK will play a larger role in the future, allowing researchers
to (a) quantify the difficulty of finding a particular pattern, since eK will describe the minimal
string needed to be discovered by a Machine Learning technique, and (b) by helping to formal-
ize Occam’s Razor, the notion that it is not the larger genome which is desired, but instead,
typically, the smaller which achieves the same result.

87

Bibliography

[Ada02] C. Adami. What is complexity? BioEssays, 24:1085–1094, 2002.

[Alt94] L. Altenberg. Evolving better representations through selective genome growth. In Proceedings of
the First IEEE Conference on Evolutionary Computation, 1994.

[Art04] W. Arthur. Biased Embryos and Evolution. Cambridge University Press, 2004.

[Ban04] W. Banzhaf. On evolutionary design, embodiment, and artificial regulatory networks. In F. Iida et
al, editor, Embodied Artificial Intelligence, LNAI. Springer-Verlag, 2004.

[BCFV95] G. Braga, G. Cattaneo, P. Flocchini, and C. Vogliotti. Pattern growth in elementary cellular au-
tomata. Theoretical Computer Science, 145(1-2):1–26, 1995.

[Ben86] C. H. Bennet. On the nature and origin of complexity in discrete, homogeneous, locally interacting
systems. Foundations of Physics, 16(585), 1986.

[BF02] V. Becher and S. Figueira. An example of a computable absolutely normal number. Theoretical
Computer Science Archive, 270(1-2):947–958, 2002.

[BKM97] F. Blanchard, P. Kurka, and A. Maass. Topological and measure-theoretic properties of one-
dimensional cellular automata. Physica D, 103(1-4):86–99, 1997.

[BM97] G. Bell and A. Mooers. Size and complexity among multicellular organisms. Biological Journal of
the Linnean Society, 60:345–363, 1997.

[BM04] W. Banzhaf and J. Miller. The challenge of complexity. In A. Menon, editor, Frontiers in Evolutionary
Computation. Kluwer Academic, 2004.

[BMBH04] D. Basanta, M. Miodownik, P. Bentley, and E. Holm. Evolving automata to grow patterns. In Proc.
of the 2004 NASA/DoD Conference on Evolvable Hardware, 2004.

[BMRT03] M. Bissel, S. Mian, D. Radisky, and E. Turley. Tissue specificity: Structural cues allow diverse
phenotypes from a constant genome. In G. Müller and S. Newman, editors, Origination of Organismal
Form: Beyond the Gene in Developmental and Evolutionary Biology. MIT Press, 2003.

[Bro07] Nicolas Brodu. Practical Investigations of Complex Systems. Ph.D. in computer science, Concordia
University, 2007.

[Car05] S. Carroll. Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the
Animal Kingdom. W. W. Norton and Company, 2005.

[CDF+01] S. Camazine, J. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau. Self-Organization
in Biological Systems. Princeton University Press, 2001.

[CGW05] S. Carroll, J. Grenier, and S. Weatherbee. From DNA to Diversity: Molecular Genetics and the
Evolution of Animal Design, 2nd Ed. Blackwell Publishing, 2005.

[Cha98] G. Chaitin. The Limits of Mathematics. Springer-Verlag, 1998.

[Coa97] P. Coates. Using genetic programming and l-systems to explore 3d design worlds. In Junge, editor,
CAADFutures’97, 1997.

[Coo04] M. Cook. Universality in elementary cellular automata. Complex Systems, 15:1–40, 2004.

[CY88] K. Culik and S. Yu. Undecidability of ca classification schemes. Complex Systems, 2(177), 1988.

[Daw96] R. Dawkins. Climbing Mount Improbable. W.W. Norton & Company, 1996.

[Daw04] R. Dawkins. The Ancestor’s Tale: A Pilgrimage to the Dawn of Evolution. Houghton Mifflin, 2004.

[DB96] F. Dellaert and R. Beer. Developmental model for the evolution of complete autonomous agents. In
From Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of
Adaptive Behaviour, 1996.

[DD05] A. Deutsch and S. Dormann. Cellular Automaton Modelling of Biological Pattern Formation: Char-
acterization, Applications and Analysis. Birkauser, 2005.

[ES03] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer, 2003.

88

[FD06] D. Federici and K. Downing. Evolution and development of a multicellular organism: Scalability,
resilience, and neutral complexification. Artificial Life, 12(3):381–409, 2006.

[Fen02] T. Fenchel. Origin and Early Evolution of Life. Oxford Biology, 2002.

[FK98] C. Furusawa and K. Kaneko. Emergence of rules in cell society: Differentiation, hierarchy, and
stability. Bulletin of Mathematical Biology, 1998.

[FP97] P. Funes and J. Pollack. Computer evolution of buildable objects. In P. Husbands and I. Harvey,
editors, Fourth European Conference on Artificial Life, pages 358–367, 1997.

[GMS03] A. Gal, G. Mahal, and M. Sipper. Evolutionary plantographics. Artificial Life, 9(2):191–205, 2003.

[Gou02] S. J. Gould. The Structure of Evolutionary Theory. The Belknap Press of Harvard University Press,
2002.

[GV06] P. Grünwald and P. Vitányi. Shannon information and Kolmogorov complexity. arXiv:cs.IT/0410002,
2006.

[HGP03] P. Eggenberger Hotz, G. Gomez, and R. Pfeifer. Evolving the morphology of a neural network for
controlling a foveating retina and its test on a real robot. In Artificial Life VIII: 8th Int. Conf. on
the Simulation and Synthesis of Living Systems, 2003.

[HM06] S. Harding and J. Miller. The dead state: A comparison between direct and developmental encodings.
In GECCO, 2006.

[Hor05] G. Hornby. Measuring, enabling and comparing modularity, regularity and hierarchy in evolutionary
design. In GECCO, 2005.

[Hot97] P. Eggenberger Hotz. Evolving morphologies of simulated 3d organisms based on differential gene
expression. In Proceedings of the Fourth European Conference on Artificial Life, pages 205–213.
Elsevier Academic Press, 1997.

[Hot03] P. Eggenberger Hotz. Combining developmental processes and their physics in an artificial evolution-
ary system to evolve shapes. In S. Kumar and P. Bentley, editors, On Growth, Form and Computers,
pages 302–318. Elsevier Academic Press, 2003.

[Ila01] A. Ilachinski. Cellular Automata: A Discrete Universe. World Scientific, 2001.

[KAJ05] R. Kicinger, T. Arciszewski, and K. A. De Jong. Evolutionary computation and structural design: a
survey of the state of the art. Computers & Structures, 83(23-24):1943–1978, 2005.

[Kau00] S. Kauffman. Investigations. Oxford University Press, 2000.

[KB03] S. Kumar and P. Bentley. On Growth, Form and Computers. Elsevier Academic Press, 2003.

[KGK04] T. Kowaliw, P. Grogono, and N. Kharma. Bluenome: A novel developmental model of artificial
morphogenesis. In Genetic and Evolutionary Computation GECCO-2004, 2004.

[KO01] H. Kawamura and H. Ohmori. Computational morphogenesis of discrete structures via genetic algo-
rithms. Memoirs of the School of Engineering, Nagoya University, 53(1/2):28–56, 2001.

[Kow03] T. Kowaliw. Bluenome: A novel developmental model for the evolution of artificial agents. Master’s
thesis, Concordia University, 2003.

[LD03] O. Leyser and S. Day. Mechanisms in Plant Development. Blackwell Publishing, 2003.

[LH04] P. Lehre and M. Hartmann. Development and complexity-based fitness function modifiers. In Work-
shop on Regeneration and Learning in Developmental Systems, 2004.

[Li88] W. Li. Power spectra of regular languages and cellular automata. Complex Systems, 1(1), 1988.

[Lin68] A. Lindenmayer. Mathematical models for cellular interaction in development. Journal of Theoretical
Biology, 18:280–315, 1968.

[LV93] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications, 2nd Ed.
Springer, 1993.

[LW97] C. J. Lowe and G. A. Wray. Radical alterations in the roles of homeobox genes during echinoderm
evolution. Nature, 389:718–721, 1997.

[M0̈3] G. Müller. Homology: The evolution of morphological organization. In G. Müller and S. Newman,
editors, Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary
Biology. MIT Press, 2003.

[McS91] D. W. McShae. Complexity and evolution: What everybody knows. Biology and Philosophy, 6:303–
324, 1991.

[McS00] D. W. McShae. Functional complexity in organisms: Parts as proxies. Biology and Philosophy,
15:641–668, 2000.

[Meg05] T. H. G. Megson. Structural and Stress Analysis, 2nd Ed. Elsevier Butterworth Heinmann, 2005.

[MG05] R. M. H. Merks and J. A. Glazier. A cell-centred approach to developmental biology. Physica A,
352:113–130, 2005.

89

[MH05] S. Macgregor and I. Harvey. Embracing plagiarism: Theoretical, biological and empirical justification
for copy operators in genetic optimization. Genetic Programming and Evolvable Machines, 6-4:407–
420, 2005.

[Mil04] J. Miller. Evolving a self-repairing, self-regulating, french flag organism. In GECCO, 2004.

[Mit98] M. Mitchell. Computation in cellular automata: A selected review. In T. Gramss, M. Bornholdt,
M. Mitchell, and T. Pellizzari, editors, Nonstandard Computation, pages 95–140. VCH Verlagsge-
sellschaft, 1998.

[OOO01] G. Olivera, P. Olivera, and N. Omar. Definition and application of a five parameter characterization
of a one-dimensional cellular automata rule space. Artificial Life, 7(3):277–302, 2001.

[PL90] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer-Verlag, 1990.

[PRL06] P. Prusinkiewicz and A. Rolland-Lagan. Modeling plant morphogenesis. Current Opinion in Plant
Biology, 9:83–88, 2006.

[PW85] N. Packard and S. Wolfram. Two-dimensional cellular automata. Journal of Statistical Physics,
38:901–946, 1985.

[Raj95] S. D. Rajan. Sizing, shape and topology design optimization of trusses using a genetic algorithm.
Journal of Structural Engineering, 121:1480–1487, 1995.

[RP04] J. Rieffel and J. Pollack. The emergence of ontogenic scaffolding in a stochastic development envi-
ronment. In GECCO, 2004.

[SB05] L. Sekanina and M. Bidlo. Evolutionary design of arbitrarily large sorting networks using develop-
ment. Genetic Programming and Evolvable Machines, 6(3):319–347, 2005.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379?423
& 623?656, 1948.

[Sha81] R. Shaw. Strange attractors, chaotic behaviour, and information flow. Zeitschrift fur Naturforschung,
36A(80), 1981.

[Sim99] K. Sims. Evolving three-dimensional morphology and behaviour. In P. Bentley, editor, Evolutionary
Design by Computers, pages 1–10. Morgan Kauffman, 1999.

[SM03] K. Stanley and R. Miikkulainen. A taxonomy for artificial embryogeny. Artificial Life, 9(2):93–130,
2003.

[SN04a] K. Stoy and R. Nagpal. Self-reconfiguration using directed growth. In Proc. 7th Int. Symp. on
Distributed Autonomous Robotic Systems, pages 1–10, 2004.

[SN04b] K. Stoy and R. Nagpal. Self-repair through scale independent self-reconfiguration. In Proceedings of
IEEE/RSJ International Conference on Robots and Systems (IROS), pages 2062–2067, 2004.

[SSH04] C. Shalizi, K. Shalizi, and R. Haslinger. Quantifying self-organization with optimal predictors. Phys.
Rev. Lett., 93(118701), 2004.

[Sta06] K. Stanley. Exploiting regularity without development. In Proceedings of the 2006 AAAI Fall
Symposium on Developmental Systems. AAAI Press, 2006.

[Tur52] A. Turing. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B,
237:37–72, 1952.

[vNB66] J. von Neumann and A. Burks. Theory of Self-Reproducing Automata. University of Illinois Press,
1966.

[Wal70] A. Wallace. Contributions to the Theory of Natural Selection: A Series of Essays. Macmillan, 1870.

[Wel84] T. A. Welch. A technique for high-performance data compression. Computer, 17:8–19, 1984.

[Wes89] H. H. West. Analysis of Structures: An Integration of Classical and Modern Methods. John Wiley
and Sons, 1989.

[Wil84] S. Wilson. Growth rates and fractional dimensions in cellular automata. Physica D, 10:69–74, 1984.

[Wol83] S. Wolfram. Cellular automata. Los Alamos Science, 9:2–21, 1983.

[Wol02] S. Wolfram. A New Kind of Science. Wolfram Media, 2002.

[Wue99] A. Wuensche. Classifying cellular automata automatically. Complexity, 4(3):47–66, 1999.

[YS02] Y. Yang and C. K. Soh. Automated optimum design of structures using genetic programming.
Computers & Structures, 80(18-19):1537–1546, 2002.

[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE Transac-
tions on Information Theory, IT-24(5), 1978.

[ZRL06] E. Zamir, P. Rupp, and C. Little. Studying in vivo dynamics of vasculogenesis using time-lapse com-
putational imaging. In R. Forroughs, editor, New Frontiers in Angiogenesis, pages 31–42. Springer-
Verlag, 2006.

90

Appendix A

Complexity Addenudum

Additional materials for our discussion of measure of complexity.
Table A.1 summarizes the correlations between our various measures, listing the associated

p-value.
Below, we include proofs of some of the claims regarding TCAs.

Theorem A.0.1 For every pattern p = (p1, ..., pl), there exists some TCA α such that α `TCA
p.

Proof We define a TCA α which fits the bill. We assume l > 2, proof is trivial otherwise. Let
αt = 1 and αd = l. Consider each point on the lattice at time t = 0: for each location xi, we

Table A.1: Correlation values between complexity measures. Notation: × — versus; f1 —
funcplexity(O1); f2 — funcplexity(O2); Z — LZW compression; eK ·D — the product of normalized
eK and normalized D.

l dof eK ×H p ≤ D ×H p ≤ Z ×H p ≤ f1 ×H p ≤ f2 ×H p ≤
5 30 .733 .0001 .441 .0074 .502 .0024 .733 .0001 .530 .0013
6 62 .693 .0001 .117 .269 .495 .0027 .702 .0001 .593 .0003
7 126 .710 .0001 .187 .018 .521 .0001 .566 .0001 .421 .0001
8 254 .624 .0001 .069 .1366 .450 .0001 .671 .0001 .543 .0001
9 510 .526 .0001 .077 .0412 .475 .0001 .304 .0001 .433 .0001
10 1022 .400 .0001 .075 .0082 .428 .0001 .628 .0001 .554 .0001
11 2046 .366 .0001 .010 .3256 .444 .0001 .200 .0001 .282 .0001
12 4094 .255 .0001 -.004 .3587 .396 .0001 .701 .0001 .309 .0001
13 8190 .280 .0001 -.137 .0001 .393 .0001 .144 .0001 .193 .0001
14 16382 .016 .0200 .085 .0001 .435 .0001 .632 .0001 .396 .0001
15 32766 .150 .0001 -.006 .1387 .388 .0001 .510 .0001 .338 .0001

l eK × Z p ≤ eK × f1 p ≤ eKxf2 p ≤ eK ·D ×H p ≤
5 .338 .0339 1.00 .0001 .787 .0001 .464 .0049
6 .241 .0998 .567 .0005 .571 .0005 .286 .0627
7 .290 .0005 .508 .0001 .474 .0001 .293 .0004
8 .397 .0001 .550 .0001 .480 .0001 .132 .0178
9 .302 .0001 .153 .0003 .324 .0001 .089 .0223
10 .229 .0001 .300 .0001 .524 .0001 .079 .0058
11 .270 .0001 .219 .0001 .142 .0001 .035 .0567
12 .156 .0001 .116 .0001 .572 .0001 .004 .3990
13 .184 .0001 .215 .0001 .075 .0001 -.109 .0001
14 .006 .221 .064 .0001 .157 .0001 .085 .0001
15 .069 .0001 .167 .0001 .784 .0001 -.005 .1827

91

may describe its neighbourhood, µ(xi):

µ(xi) = (xi− l
2
, ..., xi−1, xi, xi+1, ..., xi+ l

2
)

Since xj = 1 for exactly one j (by initialization), we have µ(xi) 6= µ(xj) ∀i 6= j.
Now, let’s define a rule set for α:

µ(x1)→ p1

...

µ(xl)→ pl

with all other neighbourhoods mapping to arbitrarily chosen values from Σ. Clearly, it may be
shown point-wise that following one time step, the lattice will contain pattern p.

Theorem A.0.2 Given some environmental configuration p on environmental space E, and
some two-dimensional TCA α such that α `TCA p, then ∀k st αd < k < |E|, there exists a TCA
α′ such that α′ `TCA p

Proof Let k′ ∈ {αd + 1, ..., |E|}. We construct an α′ such that α′
d = k′ and computes p. Let

α′
s = αs

For each rule in αφ, we define a set of 2k
′−k rules for our new transition function: Let any

particular rule be written
µ(x1, ..., xk)→ y

Then, we define a new rule
µ′(x1, ..., xk, xk+1, ..., xk′)→ y

for each combination of the boolean values {xk+1, ..., xk′}.
Since the rules of αφ span all combinations of the initial variables, {x1, ..., xk}, we have a

complete rule listing, and hence, a complete transitions function, α′
φ.

Now consider some arbitrary environmental configuration, p′. Transition function αφ maps
each index in p′ to a new value based on a neighbourhood about that index through some rule,
say:

µ(p′i, p
′
j1 , ..., p

′
jk−1

)→ p′′i

for some indices j1, ..., jk−1. But, regardless of the values in the larger surrounding neighbour-
hood, by construction, there exists a rule in α′

φ such that

µ(p′i, p
′
j1 , ..., p

′
jk−1

, p′jk , ..., p′jk′−1
)→ p′′i

Hence, we have that
αφ(p′) = p′′ ⇒ α′

φ(p
′) = p′′

Since by the definition of TCAs both α and α′ begin with the same initial configuration of
E, the evolution of alpha and α′ is identical, showing that α′ `TCA p.

92

Appendix B

Explicit Deva Algorithms

In this appendix we outline some explicit algorithms for Deva growth, and the various Deva
Models. A summary of the Deva models is contained in Table 4.1 on page 47.

B.1 General Deva Growth Algorithms

The following are several concepts used in the Deva algorithms.

B.1.1 Neighbourhoods

We will frequently refer to neighbourhoods, which for our purposes may be classified into three
types: von Neumann neighbourhoods, Moore neighbourhoods, and Deva neighbourhoods; For
simplicity in two dimensions, we will refer to them as four-, eight- and twelve-neighbourhoods.
See Figure B.1 for illustration in two and three dimensions.

B.1.2 Best Free Location

The best free location is a means of choosing a location from a cell’s neighbourhood for division
(or movement); Loosely, it is intended to mimic the natural growth of a cell. It does so by
determining which cell direction has the largest mass surrounding it, then selecting the opposite,

Figure B.1: Neighbourhoods of type (left) von Neumann, (center) Moore and (right) Extended von
Neumann, in (top) two and (bottom) three dimensions.

93

when the space is free. If there are no free locations, the algorithm returns null; Otherwise, in
case of a tie, the algorithm contains a bias. This bias is unavoidable, some axis of symmetry
must be broken in discrete cell division on a lattice1.

The following is an algorithm for the determination of the best free location in two and three
dimensions: Let the cell of interest be known as the origin, o; We define the direction cells to be
the von Neumann neighbours of the origin, D; Hence, D is a set of four cells in two dimensions,
and six in three dimensions. For any cell location c, let full(c) be equal to 0 if the cell location
is empty, 1 otherwise. Let us call the Moore neighbourhood of the origin N , with N/c to be the
set N modulo the cell c for any cell c, and similarly for N/S for any set of cells S.

Next, we define the tangent at a direction relative to the origin cell: The tangent set,
T (o, d), is defined to be all cells c in the Moore-neighbourhood of the origin, o, such that the
line connecting c to d is orthogonal to the line connecting d to o — one can imagine this to
be the intersection of the tangent line or plane with the neighbourhood about o. For example,
in two dimensions, the tangent to direction “5” is T (0, 5) = {4, 5, 6}. Note that cells may be
elongated — in this case, all directions are relative to the “source” cell.

Firstly, we remove any non-empty directions from the set D; If D is empty following this,
we exit, returning null. Otherwise, for any direction d ∈ D, we may define the OpMass to be

OpMass(d) =
∑

c∈N/T (o,d)

full(c)

Hence, the OpMass of a direction is a count of all cells not located in the direction location and
tangent, i.e. the mass of the opposite direction. For example, in two dimensions, the mass of
direction “1” would be the sum full(3) + full(4) + full(5) + full(6) + full(7).

Now, we may define the best free location as the proper maximum, maxOpMass(d) D; If there
are several maximal values, then we choose amongst them via our developmental bias; In two
dimensions, this is the prioritized list of directions {1, 3, 5, 7}; In three dimensions, the prioritized
list is {10, 14, 12, 18, 16, 1}.

B.1.3 Deva Growth

Given definitions of neighbourhood state descriptions (and distances between them) and a set
of actions, we may define a deva growth algorithm; This algorithm is summarized in Algorithm
1 (we detail the algorithm for each cell action below). Note that information is gathered from
the preceding developmental space, Dtime−1, but executed in the current developmental space,
Dtime.

Individual cell actions are detailed individually. For each case, if applicable, we assume that
we are considering cell c in developmental space Dtime, which has sufficient resources, has an
available location for action execution, and such an action is legal. Note that in any particular
deva implementation, not all listed actions will be present.

• “nothing”: does not cause any change.

• “die”:
1It is quite possible, and probably preferable, to define the “best” direction randomly in cases of a tie; This

has not been done here to keep results deterministic.

94

Algorithm 1 Deva Growth Algorithm
int time← 0
boolean hasChanged← TRUE
Initialize developmental space D0

while hasChanged do
hasChanged← FALSE
time = time + 1
developmental space Dtime = Dtime−1

for all Active cells c do
Neighbourhood µc ← getNeighbourhood(Dtime−1, c)
Action ac ← φ(µc)
if ∃ space to execute ac ∧ crc > cost(ac, c) ∧ execution of ac is legal then

crc ← crc − cost(ac, c)
Execute(c, ac, Dtime)
if ac 6= “nothing” then

hasChanged← TRUE
end if

end if
end for

end while

Delete(c, Dtime)

• “divide”:

c′ ← copy(c)
bestFreeLocation(c)← c′

• “divide(noinher)”:

c′ ← copy(c)
c′colour ← 1
bestFreeLocation(c)← c′

• “divide(dir)”:

c′ ← copy(c)
neighbour(c, dir)← c′

• “divide(allway)”:

for all Direction dir do

c′ ← copy(c)
neighbour(c, dir)← c′

end for

• “divide(clockwise)”:

for all dir = [left, up, right, down] do

if isEmpty(neighbour(c, dir)) then

c′ ← copy(c)
neighbour(c, dir)← c′

Break.
end if

end for

95

• “specialize(x)”, where x ∈ {2, ..., nc}:
ccolour ← x

• “on(x)”, where 0 ≤ x ≤ ng:

ccolour ← ccolour + 2x

• “off(x)”, where 0 ≤ x ≤ ng:

ccolour ← ccolour − 2x

• “move”:

c′ ← copy(c)
bestFreeLocation(c)← c′

Delete(c, Dtime)

• “elongate”:

if ∃ elongationDirection(c) ∧ free(location(elongationDirection(c))) then

elongate(c, elongationDirection(c))
else if ∃ bestFreeLocation(location(c)) then

elongate(c, elongate(bestFreeLocation(location(c))))
end if

• “elongate(dir)”:

elongate(c, dir)

B.2 Deva 1

The deva implementation Deva 1 is designed to be as simple, in terms of transition func-
tion specification, as possible; This is accomplished through liberal use of the best free lo-
cation algorithm (See Appendix B.1.2). The set of actions includes at least the set A =
{die, divide, specialize(2), ..., specialize(nc)}. Based on a system parameter, this set may be
augmented with one of {move, elongate}. Hence, without movement or elongation, |A| = 1+nc,
and with either, |A| = 2 + nc. If a “nothing” action is explicitly included, |A| = 2 + nc or
|A| = 3 + nc.

B.2.1 Deva 1 Transition Function

A Deva 1 transition function is a listing of descriptions of possible neighbourhoods of a specified
length, |φ|. These rules are tuples of the form:

(c, h1, ..., hnc , a)

where c is a colour, a an action, and hi is a count of the number of neighbours of cell type i, or
a hormone-level. Hence, the size of the representation of such a transition function is O(|φ| ·nc),
and the number of possible transition functions2 is nc · |µ|nc · |A|, where A is the set of all actions
and |µ| is the size of a deva-neighbourhood (12 in two dimensions).

2Note that many transition functions will be functionally equivalent.

96

Any particular cell may consult its transition function to determine an action appropriate
to its neighbourhood. By consulting its neighbourhood, it may construct nc environmental-
hormone-readings, or a count of the number of cells of type i in its deva neighbourhood (relative
to the source cell); These will be written {e1, ..., enc

}; Next we find the rule in our transition
function which closely matches the set of ei to the set of hi using Euclidean distance — This
process is made precise in Algorithm 2.
Algorithm 2 Deva 1 Transition Function Application Algorithm

Current cell c0

Deva-neighbourhood µc0
Environmental-Hormones ei ← 0 for all ei ∈ {e0, ..., enc}
for all Cells c ∈ µc0 do

int type← cellType(c)
etype ← etype + 1

end for
Rule rmin = (smin, amin)← (Ø,Ø)
float min←∞
for all Rules r ∈ φ do

if rcolour = colour(c0) then
float distance← (e0 − rh0)

2 + ... + (enc − rhnc
)2

if distance < min then
min← distance
rmin ← r

end if
end if

end for
return amin

Genetic Initialization

We would like a means of initializing a set of rules such that hormone values in the rules are
likely to match possible neighbourhoods in developmental space. As the integer values may
range between 0 and 12, random selection will likely result in an impossible3 pattern (i.e. one in
which

∑
hi > 12, in two-dimensions). Hence, we desire a power-law distribution which favours

0:
Pr[X = i | 0 ≤ i ≤ 12] =

1∑12
j=0 βj

β12−i

We would like the expected value of the generation of any particular rule to be somewhere in the
range of {0, .., 12}, where selecting a larger value is preferable, since the majority of computation
will occur in a full neighbourhood; Hence, we take E[nc · X] ≈ 12. Solving (numerically) the
equation

12
nc

=
1∑12

j=0 βj

12∑
i=0

i · β(12−j)

we obtain β ≈ 3.6 for nc = 32 and β ≈ 6.3 for nc = 64
3Impossible for exact matching, that is, and less likely for more reasonable distributions for closest distance-

matching.

97

We also require a probability distribution for possible actions:

Pr[Y = a] =

1/4, if a = “divide”

1/4, if a = “die”

1/4, if a = “elongate”

1/4, if a = “specialize”

where all colours of specialization are equally likely, save “0” or “1”, which are excluded. If the
“move” action is included in the run, it simply replaces then “elongate” action.

Hence, we may generate a random rule by (uniformly) randomly generating an initial rule
colour, then generating nc hormones and one action according to the above distributions. The
same distributions may be used for the genetic operator mutation.

Finally, we note a system parameter, useSeed, which forces the first rule in any initialized
agent to be: (1, 0, ..., 0, “divide”). This rule may be viewed as similar to the undifferentiated
cleavage found in the initial stage of animal embryogenesis. Note that useSeed has no effect after
initialization, hence allowing the “seeded” rules to possibly be removed from the population,
depending on the whims of evolution.

B.3 Deva 1 Variants

Here we introduce several variants of the Deva 1 model; These are designed to allow for the
comparative study of various model-level choices made in the design of Deva 1.

B.3.1 Deva 1.N

Deva 1.N is equivalent to Deva 1 in all ways, save for the inclusion of an explicit “nothing”
command in the action list.

Initialization varies slightly for the Deva 1.N genome in the generation of a random action,
which follows the following distribution:

Pr[Y = a] =

1/5, if a = “divide”

1/5, if a = “die”

1/5, if a = “nothing”

1/5, if a = “elongate”

1/5, if a = “specialize”

where each sort of specialization is equally likely.

B.3.2 Deva 1.Dir

The Deva 1.Dir model is an attempt to give control over the direction of actions to the genome,
rather than use the best free location algorithm. Hence, here there is no directional bias, instead
any asymmetry results from the genome.

98

Figure B.2: An organism grown via the Deva 1.Allway technique showing morphological but not perfect
symmetry. On the left, the perfectly symmetric cell view, contrasted by the non-symmetric truss view
on the right.

Deva 1.Dir uses a larger action list, where directions are explicitly included: A =
{“nothing”, “die”, “divide(left)”, ..., “divide(down)”, “elongate(left)”, ..., “elongate(down)”,
“specialize(x)”}, where x ∈ {2, ..., 32}, making |A| = 41. Initialization follows the following
distribution:

Pr[Y = a] =

1/2, if a = “divide(d)”

1/10, if a = “die”

1/10, if a = “nothing”

1/10, if a = “elongate(d)”

1/5, if a = “specialize(x)”

where each colour of specialization and direction of elongation or division is equally likely. The
useSeed option for Deva 1.Dir causes the initial rule to be of the form (1, 0, ..., 0, “divide(d)”),
where d is some random direction.

B.3.3 Deva 1.AllWay

The Deva 1.AllWay model is very similar to the Deva 1.N model, with a different mechanism
for division. The new mechanism divides in all ways simultaneously, greatly increasing the speed
of organism development. This mechanism has been included for two reasons: Firstly, to explore
the addition of a nearly symmetric growth model; Secondly, as similar division mechanisms have
been used in other CA-based AE experiments.

Noted above, the symmetry of the organisms will not, in general, be perfect; That is, there
will exist two-fold symmetry of cell location and type, mirrored over the x = 0 line; But, since
cell types need not be symmetric themselves, there may be asymmetry in the beams, even more
so following trimming. We shall refer to this as “morphological symmetry” in the future. An
illustration of an organism which has morphological symmetry but not perfect symmetry is
shown in Figure B.2.

The action list is identical to that of Deva 1.N, save the replacement of the “divide” (into best
free location) action with the “divide(allway)”. Additionally, the elongation options have been
greatly limited so as to preserve morphological symmetry — we allow only the “elongate(up)”
action. Hence, our total action list is A = {“nothing”, “die”, “divide(allway)”, “elongate(up)”,
“specialize(x)”}, where x ∈ {2, ..., 32}, making |A| = 34.

Initialization varies slightly for the Deva 1.N genome in the generation of a random action,

99

which follows the following distribution:

Pr[Y = a] =

3/10, if a = “divide(allway)”

1/5, if a = “die”

1/5, if a = “nothing”

1/10, if a = “elongate(up)”

1/5, if a = “specialize”

where each sort of specialization is equally likely.

B.3.4 Deva 1.Clockwise

The Deva 1.Clockwise model is identical to the Deva 1.N model, save for the replacement of
division into the best free location by division into a location chosen more simply. The next loca-
tion for cell division is the first free location found in the four-neighbourhood, starting with the
left and proceeding clockwise. This model is included in order to provide a middle step between
Deva 1.N and Deva 1.Dir in terms of intelligence provided by designer to the developmental
process. Action list and initialization are identical to that of Deva 1.N, save the replacement
of the “divide” and “elongate” (into best free location) actions with “divide(clockwise)” and
“elongate(clockwise)”.

B.3.5 Deva 1.Stateless

The Deva 1.Stateless model is a model in which the colour of the active cell does not partition
the DNA of the transition function. Whereas in the typical Deva 1 model, a rule in the transition
function is of the form

(c, h1, ..., hnc , a)

in Deva 1.Stateless, rules instead follow the template

(h1, ..., hnc , a)

This means that the transition function is incapable of making decisions on the basis of the
colour of the active cell, and is hence a decrease in information, and a divergence from biology.
The Deva 1.Stateless transition function follows the algorithm described in Algorithm 3.

B.4 Deva 2

A Deva 2 transition function is a listing of |φ| rules of the form:

(c, h1, ..., hng , hj , a)

where c is a colour, a an action, and hi is a count of the number of activations of gene gi in
the twelve-neighbourhood. The hj hormone counts the number of joints, relative to empty cells.
The transition function then compares the current description of a cell to the various patterns in

100

Algorithm 3 Deva 1.Stateless Transition Function Application Algorithm
Current cell c0

Deva-neighbourhood µc0
Environmental-Hormones ei ← 0 for all ei ∈ {e0, ..., enc

}
for all Cells c ∈ µc0 do

int type← cellType(c)
etype ← etype + 1

end for
Rule rmin = (smin, amin)← (Ø,Ø)
float min←∞
for all Rules r ∈ φ do

float distance← (e0 − rh0)
2 + ... + (enc

− rhnc
)2

if distance < min then
min← distance
rmin ← r

end if
end for
return amin

φ, outputting the closest matching rule, if one exists. This process is made precise in Algorithm
4.
Algorithm 4 Deva 2 Transition Function Application Algorithm

Current cell c0

Deva-neighbourhood µc0
Environmental-Hormones ei ← 0 for all ei ∈ {e0, ..., eng}
for all Cells c ∈ µc0 do

for all Gene types gi do
if gi is active in c then

ei ← ei + 1
end if

end for
end for
Rule rmin = (smin, amin)← (Ø,Ø)
float min←∞
for all Rules r ∈ φ do

if rcolour = colour(c0) then
float distance← (e0 − rh0)

2 + ... + (eng − rhng
)2 + (ej − rhj)

2

if distance < min then
min← distance
rmin ← r

end if
end if

end for
return amin

B.4.1 Deva 2.Stateless

In the Deva 2.Stateless model, much like in the Deva 1.Stateless model, the initial identifying
colour in the genome rules is removed. Hence, a rule in φ may be written as

(h1, ..., hng , hj , a)

101

This again removes information from the decision-making process, and moves Deva 2.Stateless
further from biological plausibility. It is included for contrast, for the same reasons as the
inclusion of Deva 1.Stateless.

B.5 Deva 3

A Deva 3 transition function is a listing of |φ| rules of the form:

(h0, h1, ..., h11, a)

where hi represents a colour from the twelve-neighbourhood (See Figure B.1 for indices). Let
us denote the hormones from the rule h. The transition function creates a description of a
given cell’s current neighbourhood, c = (c0, c1, ..., c11), consisting of a listing of the colours
surrounding the current cell. Then, the Manhattan distance is computed:

mandistance(h, c) =
∑

0≤i<12

1; ci = hi

0; ow.

The first rule in the transition function with minimal mandistance will specify the action taken
by the cell.

Initialization of a Deva 3 genome begins with a list of twelve colours, each chosen uniformly
and randomly from the set C. The action is chosen from the same distribution as in the Deva
1 Model.

B.6 Deva 4

The Deva 4 model uses the action set A = {die, divide, on(g0), ..., on(gng
), off(g0), ...,

off(gng)}. The Deva 4.CellType uses transition function and initialization from Deva 1, while
the Deva 4.GeneType uses transition function and initialization from Deva 2. Initialization of
the actions for both Deva 4 models uses the distribution:

Pr[Y = a] =

1/6, if a = “divide”

1/6, if a = “die”

1/6, if a = “nothing”

1/6, if a = “elongate”

1/6, if a = “on”

1/6, if a = “on”

with each gene being equally likely for “on” and “off”.

102

Appendix C

Truss Analysis

C.1 Truss Analysis

In this section, we discuss the stress analysis of a general plane truss. The assumption is made
that the truss is topologically connected, pin-connected, friction-free, and that force is applied
only at joints; However, no other assumptions are made, notably about the stability or static
determinacy of the truss.

In our example, all truss members are identical in terms of material and area; We use a
EA = 2.00× 109 N

m2 · 7.85× 10−5m2 = 1.57× 104 N, corresponding to a modulus of elasticity for
steel [Meg05] and a cylindrical member of diameter 1 cm (A = π(0.01)2

4).
An important question regarding structures is whether or not they are stable — this question

will determine if the structure is capable of supporting itself without deformation. The following
is a discussion of some conditions which may be used to test for the static determinacy of a
general plane truss.

If a reaction component were added to the truss without including a condition that would
allow for its determination, we would call the truss statically indeterminate externally. If a
member were added without a joint, the structure would be called statically indeterminate
internally.

We may test for external determinacy and stability according to the following process: Let
r be the least number of reaction components required for external stability, and ra the actual
number of reaction components, then:

• if ra < r then the structure is statically unstable externally

• if ra = r then the structure is statically determinate externally

• if ra > r then the structure is statically indeterminate externally

Hence, the condition ra ≥ r is a necessary but insufficient condition for statical classification.
We must also guarantee internal determinacy; Let m be the total number of beams, and j

the number of joints. Then internal determinacy is satisfied when:

2j = m + r

This is true since the left-hand side is the number of equilibrium equations that are available,

103

while the right-hand side represents the total number of unknown bar and reactive forces. Hence,

m = 2j − r

Or, m members are required to form an internally static structure. If ma is the actual number
of bar forces, we get:

• if ma < m then the structure is statically unstable internally

• if ma = m then the structure is statically determinate internally

• if ma > m then the structure is statically indeterminate internally

So, is ma < m then the truss is certainly unstable. However, if ma ≥ m, it does not necessarily
follow that the truss is stable — it is possible that the beams are not properly configured to
ensure stability.

Hence, thus far, we have necessary, but not sufficient, criteria for the determination of sta-
bility in a general plane truss.

Ideally, the majority of unstable trusses can be thrown away by the simple test above;
However, while useful for easing computation, we cannot make this assumption in general.
Instead, we assume that all trusses are statically indeterminate, and will expose the unstable
ones by failing to solve the relations. Below, we describe a matrix-based equilibrium method
for the analysis of plane trusses using force and deformation. Both technique and derivation are
from West’s treatment [Wes89].

C.1.1 Equilibrium Method of Truss Analysis

We present a summary of the equilibrium method of truss analysis; a more explicit description
and derivations may be found in Section C.2.

Consider a general truss with n joints and m beams; We are provided with external forces
to be applied at joints, and wish to determine the member forces. Let our structure forces be
{P} = {P 1, ..., Pn}T , structure displacements be {∆} = {∆1, ...,∆n}T and member forces be
{F} = {F 1, ..., Fm}T .

We may relate the individual member forces to displacement and structure forces as follows:

{F}i = [k]ia[β]i{∆} (2.4’)

where [β]i is the connectivity matrix for the ith member beam, and [k]ia is its stiffness matrix.
Hence, it suffices to compute the displacements. The displacements may be computed through
a truss stiffness matrix, a combination of the individual member stiffness matrices:

{∆} = [K]−1{P} (2.5’)

Hence, given a plane truss, we may first compute the stiffness matrix, then compute the dis-
placements, then the individual member forces.

The entire process is bounded by the calculation of a matrix inversion1, and hence has
running time O(m3).

1Actually, a slightly faster LU-Decomposition, as implemented by the Java numerics library Jama.

104

Figure C.1: Illustration of terminology in member-deformation.

C.2 Derivation of Equilibrium Method of Plane Truss

Analysis

C.2.1 Derivation of Axial-Force Deformation Relationships

Here we define several terms necessary for the analysis of pin-connected trusses through defor-
mation2. Given a truss member-beam (see Figure C.1) of length l, area A, modulus of elasticity
E, and subjected to member force F1 = F2, we aim to compute its deformation. If our defor-
mation is ∆ = δ1 + δ2, we may do so by computing the member axial stiffness matrix, which
relates deformation and member force:

{F} = [k]a{δ} (C.1)

We consider a truss member beam under stress; See Figure C.1 for an illustration — our
member is assumed to have length l, area A and be subjected to axial force F . An element of
length is written dx. We may represent the stress as

σ =
F

A

and the strain as
ε =

dl

dx

where dl is the change in length (deformation) that accompanies force F .
For a linearly elastic material, we may relate stress and strain through Young’s modulus

(modulus of elasticity)
σ = Eε

leading to the relation

dl =
F

EA
dx

Hence, our total elongation, ∆, is obtained by integrating over the length of the member:

∆ =
∫

[0,1]

dl =
F

EA

∫
[0,1]

dx =
Fl

EA

otherwise written
∆ =

(
l

EA

)
F

2In general, we use superscripts for the index number of a beam or joint, and subscripts for directions.

105

Inverting, we obtain

F =
(

EA

l

)
∆ (C.2)

the middle term, ka = EA
l being the axial stiffness.

We note that F = F1 = F2, and ∆ = δ1 + δ2; Substituting into equation C.2, we obtain{
F1

F2

}
=

[
EA
l

EA
l

EA
l

EA
l

]{
δ1

δ2

}
(C.3)

which we abbreviate as expressed in equation C.1.

C.2.2 Derivation of Equilibrium Method

Here we derive the equilibrium method of truss analysis described in Section C.1.1. As noted
before, we have a general truss with n joints and m beams; We are provided with external forces
to be applied at joints, and wish to determine the member forces. Let our structure forces be
{P} = {P 1, ..., Pn}T , structure displacements be {∆} = {∆1, ...,∆n}T and member forces be
{F} = {F 1, ..., Fm}T .

For each truss member (beam), i, from equation C.1, we have the following relation:

{F}i = [k]ia{δ}i (C.1’)

To ensure that members fit into the structure as a whole, it is necessary that member displace-
ment be compatible with structural displacement:

{δ}i = [β]i{∆} (C.4)

where [β]i is the connectivity matrix for the ith member.
The matrix [β]i is a 2 × n matrix which relates the member deformations of beams to the

total structural deformation at joints. Assume that member i has angle θ and φ with the x-
and y-axis, respectively. If beam i meets joint j, we may relate the displacement, ∆j , to the
deformation of beam, δi, with the following relation

δi = −(∆j
x cos θ + ∆j

y sinφ) (C.5)

We may do similarly for the joint at the other end of beam i as well. Hence, we define [β]ig,h to
be either the x or y component of equation C.5 if beam i meets joint m, and 0 otherwise.

We may now relate the member forces with the displacements

F i = [k]ia[β]i{∆} (2.4”)

Considering the work done as measured in the structural coordinate system must equal the
work done in the member coordinate system; The work for a member induced by a force with
magnitude P , given that it is proportional to displacement, is

W =
1
2
P∆

106

Or, for a constant load over m components

W =
m∑
i=1

1
2
P i∆i =

1
2
{P}T {∆}

Hence, for the m members of our truss, we have

1
2
{P}T {∆} =

m∑
i=1

1
2
{F}iT {δi}

Substituting equation C.4, we obtain

1
2
{P}T {∆} =

m∑
i=1

1
2
{F}iT [β]i{∆}

or

{∆}T
(
{P} −

m∑
i=1

[β]iT {F}i
)

= 0

Since we may design any arbitrary initial configuration, we may assume that {∆} 6= 0, leading
to

{P} =
m∑
i=1

[β]iT {F}i

or, substituting equation 2.4,

{P} =
m∑
i=1

[β]iT [k]ia[β]i{∆}

However, we may consider the general stiffness matrix

[K] =
m∑
i=1

[β]iT [k]ia[β]i

simplifying our equation to {P} = [K]{∆}, or

{∆} = [K]−1{P} (2.5”)

Once structural displacements have been obtained, we may compute member-forces by sub-
stituting into equation 2.4.

107

Appendix D

Code Documentation

D.1 Terminating Cellular Automata Documentation

The Terminating Cellular Automata are implemented as a Java package, TCA. This package
is freely available at http://kowaliw.net/tca.html, along with all computed data. Note that
images are saved using the package javax.imageio, meaning that some window manager must
be running in order for the program to execute properly. Permission to re-use, re-distribute and
modify granted, but please make note of any modification, and reference this thesis.

To compute complexity measure for one-dim TCAs:

% java TCALauncher <length> <maxDiameter>

e.g.

% java TCALauncher 10 4

output in a directory named “l<length>”; Caution: program deletes and overwrites any existing
data.

See directory tcadata for pre-computed data, along with gnuplot scripts for plotting and
PERL script for computing correlations.

To compute optima for small environments, uncomment the appropriate portion of EnvOp-
timum2D, compile and run.

% java EnvOptimum2D

Output goes to a file in the local dir, “./env<whichEnv>/patterns/env<whichEnv>Optima.patterns”.
To find TCAs which compute any of a list of patterns (say, from EnvOptimum2D), use:

% java PatternFinder2D <whichEnv> <whichDiameter>

<whichDiameter> specifies a specific diameter, not a maximum. For each pattern, a directory
will be create in the aforementioned pattern dir, and a list of TCAs of specified diameter will
be saved (if there are no such TCAs, an empty file will be saved).

108

Figure D.1: Possible environments for growth, with specification code: (left to right) 0: unlimited growth
(not shown), 1: very-thin, 2: thin, 3: right-hook, 4: left-hook, 5: bulbs1, 6: bulbs2, 7: zig-zag1, 8: zig-zag2,
9: zig-zag3, 10: squat.

D.2 Deva Documentation

Deva Version 1.0 is a two-dimensional implementation of three variations of the Deva algorithms,
deva1, deva2 and deva3. Deva implements a Genetic Algorithm, producing successive popula-
tions of agents. Produced agents are interpreted as Plane Trusses and evaluated in terms of
a fitness function incorporating static determinacy. Deva Version 1.0 is packaged in deva.jar,
containing the library net.kowaliw.deva.

D.2.1 Usage

Deva is packaged as a java archive, and used through the command line. Visualization requires
Java Swing and Java 2D — hence, we require a graphical OS for viewing results. However, all
other components do not utilize any graphical routines, so it is possible to run the majority
of an experiment in a console-based OS. This is particularly useful for the computation of the
Genetic Algorithm, as development and fitness tend to be intense computationally.

Deva is completely contained within the deva.jar file, and will use the current directory as a
location to store information. Output will be stored in created directories; All output is of the
form of either plain text documents or JPEG images.

Java 1.5 or better is required, available from http://java.sun.com. Deva also uses Jama1, a
Java package for matrix-computation — Jama is included in the file deva.jar. Deva is activated
via the command-line interface.

D.2.2 Creating a New Experiment

Deva is initialized by creating a new run, created via the command:

% java -jar deva.jar -n <dirName>

This will generate a new directory named dirName, containing a Java properties file, deva.data;
This file may be edited with a standard text editor, format should be clear from context2.
Customizable parameters are listed in Table D.1, all other parameters should be left unchanged.

1Jama was developed by MathWorks and the American National Institute of Standards and Technology
(NIST), and released into the public domain; More information at http://math.nist.gov/javanumerics.

2The program will conveniently inform users of input errors by crashing.

109

Table D.1: Parameters and explanations in file deva.dat.
Parameter Type Description

dirName String Directory (and run) name
resourceCounter float Controls maximum size of the agent (rc)

devType int Type of growth, see Table D.3
numRules int Number of rules in genome (or |φ|)

moveOrElongation int (deva1) 0: neither, 1: move, 2: elongation
useSeed int (deva1, 2) Seed an initial divide command?
minAge int (deva1, 2) Minimum age for cell action

numGenes int Number of genes (or ng), at least 5
popSize int Population size

initialMultiplier int Multiplier for initial generation
numGenSave int Frequency of auto-save, in generations

saveFitnessJump int Save every time maximum fitness increases?
whichFitness int See Table D.2
whichEnv int 0 - 10, see Figure D.1
whichInit int 1: power-distribution, 2: uniform-distribution
whichMut int 1: power-distribution, 2: uniform, 3: copy

percentageElite float Rate of elitism, in [0,1]
probMutation float Rate of mutation, in [0,1]

probCross float Rate of crossover, in [0,1]
useTournament int 0: fitness-proportional, 1: tournament selection
numTournament int Number of agents to use in tournament

tournamentProbability float p, used for tournament selection, in [0,1]
memberArea float Area (m2) of a beam
modElasticity float Young’s modulus of elasticity

unitDistanceInMetersX float Length (m) of a unit in the x-axis
unitDistanceInMetersY float Length (m) of a unit in the y-axis

maxDisplacement float Displacement (m) before truss labelled unstable

Table D.2: Fitness functions and associated specification codes.
Fitness function Code Fitness function Code

fmat 0 fstoch 1
fbase 2 ffat 4

fse 5 fme 6
ffe 7 flight 9

Table D.3: Types of deva growth and associated specification codes.
Deva Algorithm Code Deva Algorithm Code

Deva 1 1 Deva 1.N 11
Deva 1.Dir 12 Deva 1.Stateless 13

Deva 1.Clockwise 14 Deva 1.AllWay 15
Deva 1.NoSpec 16

Deva 2 23 Deva 2.Stateless 22
Deva 2.NoSpec 26

Deva 3 3
Deva 4.GeneBased 4 Deva 4.CellBased 41

Deva 5 5
Deva 99 99 Deva 999 999

110

Computing the Genetic Algorithm

Given some created and configured run, we may compute a series of steps of the genetic algo-
rithm:

% java -jar deva.jar -d <dirName> <numGen>

The program will retrieve the last saved generation in directory dirName (or, initialize the first
generation), and execute numGen generations. To standard out will be printed a progress indi-
cator, along with summary statistics of the completed generations. The GA will automatically
save each numGenSave steps, and at the end of the prescribed number of generations.

Visualization

Given a created and configured run, we may visualize the current population:

% java -jar deva.jar -v <dirName>

This command will load the population viewer for the last computed generation, allowing a
user to browse visual representations of the agents, trusses, and their development. To view a
previous saved generation, use

% java -jar deva.jar -v <dirName> <genNum>

where genNum is a saved population. To view a particular agent (useful for minimizing memory
use when rc is high), use the command

% java -jar deva.jar -o <dirName> <genNum> <agentIndex>

to launch agent agentIndex from saved generation genNum, or

% java -jar deva.jar -o <dirName> <agentIndex>

where the genNum will be understood to be the most recently saved. Note that a population file
is saved unsorted; Hence, there is no reason to believe that the ith agent in the saved population
will resemble the ith agent in a PopulationViewer. To rectify this, use the command

% java -jar deva.jar -s <dirName> <genNum>

to sort the population file for saved generation genNum, overwriting the original file.
The primary visualization interface is the Population Viewer; This is a control frame con-

taining a set of descriptors and controls for each agent in the population. The bottom panel
of the Population Viewer contains a set of descriptors for the agent in question, and the top
contains a series of controls for the various means of visualization. These controls will allow a
user to view the agent in several ways:

• The Agent Viewer, which depicts the agent as a simple set of coloured cells.

• The Agent Development Viewer, which shows a trace of the development of the agent,
including several internal variables from the DevSpace and DevSpaceGridCell classes.

• The Truss Viewer, which depicts the agent as a plane truss, trimmed.

111

Figure D.2: Screen shot of some of Deva’s visualization tools: (bottom right) the Population Viewer,
(left) Fitness Viewer, (top center) Agent Viewer, (right) Truss Viewer.

• The Truss Development Viewer, which shows the agent’s development as a series of images
of plane trusses.

• The Fitness Viewer, which (if the truss has not been previously declared unstable) the
stress analysis of the truss components

See Figure D.2 for a screen shot of the Population Viewer and associated visualization tools.

Debugging Routines

There is also a debugging routine included, allowing one to compute the fitness of, and visualize,
a truss provided in matrix form. A truss may be specified in a plain text file, in the following
format:

<width>

<height>

<cellType> ... <cellType>

...

<cellType> ... <cellType>

where the cell types are specified as integers between 0 and 323. Elongations are controlled
by the addition of a multiple of 100 to the integer specification; For example, the integer 329
specifies a cell of colour 29 which is an elongation upward, and integer 429 specifies a cell of
colour 29 which has been elongated upward — see Table D.4 for the codes. It is easy to provide
improper input at this stage, results in this case will be unpredictable. Note that excess white
space will break the truss debugger — leave precisely one space between all line entries, and
use three digits for each number to have the file line up properly (See Figure D.3). The truss
debugger may be activated with the command

3There is no need to include hidden genes, as these do not effect phenotype directly.

112

Table D.4: Mapping of integer additions to cell properties.
Integer Interpretation Integer Interpretation

0 Regular cell.
100 Elongation left. 200 Elongated left.
300 Elongation up. 400 Elongated up.
500 Elongation right. 600 Elongated right.
700 Elongation down. 800 Elongated down.

Figure D.3: Visualization of a provided truss: on the right is a view of the plain text file specifying the
truss, below the agent visualization, and on the left the truss visualization.

% java -jar deva.jar -t <trussFile>

A screenshot of an example truss is shown in Figure D.3.
Another debugging routine included deals with specified growth; This routine allows a user

to grow a single agent utilizing a specified deva properties file and an action list file (.al). Use
of this option will grow and provide visualization (agent, truss, agent-development and truss-
development) of the agent. For programmatic ease, all cells in developmental space execute
the same action in a given developmental time-step. The growth debugger may be activated as
follows:

% java -jar deva.jar -a <dirName> <actionList>

where dirName contains the appropriate properties file, and actionList is a file specifying the
sequence of actions undertaken by the developmental process (See the example action list files
in directory debug for example format). The code to map from integers to actions is shown in
Table D.5.

Data Logging

Deva automatically creates datalogs — these are located in the run directory, under the names
log.data and log.html. Both are identical in content, but one is formatted for a web browser,
while the other is raw whitespace-delimited plain text, suitable for feeding to a mathematical
software package.

113

Table D.5: Mapping of integers to actions in action list files.
Integer Action Integer Action

0 Nothing 1 Die
10 Divide 20 Move or Elongate.
21 Elongate left 22 Elongate up
23 Elongate right 24 Elongate down
25 Move left 26 Move up
27 Move right 28 Move down

100 + x Gene x on 200 + x Gene x off
1000 + x Specialize(x)

It is also possible to save images from the various agent viewers, by using the Save command
in the agent or truss viewer, or the Save-Play command from the agent or truss trace viewer.
In the former case, a JPEG image is saved to the current directory, while in the latter a new
directory is created in the current directory containing the images.

114

