
Augmenting Artificial Development with Local Fitness

Taras Kowaliw and Wolfgang Banzhaf

Abstract— In biology, the importance of environmental feed-
back to the process of embryogenesis is well understood. In
this paper we explore the introduction of a local fitness to an
artificial developmental system, providing an artificial analogue
to the natural phenomenon. First, we define a highly simplified
model of vasculogenesis, an environment-based toy problem in
which we can evaluate our strategies. Since the use of a global
fitness function for local feedback is likely too computation-
ally expensive, we introduce the notion of a neighbourhood-
based “local fitness” function. This local fitness serves as an
environmental-feedback guide for the developmental system.
The result is a developmental analogue of guided hill-climbing,

one which significantly improves the performance of an artificial
embryogeny in the evolution of a simplified vascular system.
We further evaluate our model in a collection of randomly
generated two-dimensional geometries, and show that inclusion
of local fitness helps allay some of the problem difficulty in
irregular environments. In the process, we also introduce a
novel and systematic means of generating bounded, connected
two-dimensional geometries.

I. INTRODUCTION

Artificial Development (AD, or Artificial Embryogeny,

Artificial Ontogeny, etc.) is a field concerned with the simu-

lation and exploitation of a developmental stage in a machine

learning task. Through mimicking biological embryogenesis,

researchers aim to achieve ever-larger scales of combinato-

rial organization, and to incorporate features of biological

organisms, such as heightened evolvability and self-repair.

Previous work in AD has explored the inclusion of environ-

mental information, largely through the same mechanisms as

other intercellular communication. This, however, seems to

miss the largest benefit of environmental feedback — that of

a local functional notion of success — which so successfully

guides plant and animal growth.

Here, we introduce the notion of a local fitness function;

a function which will take a local neighbourhood of cells

and return a valuation of that neighbourhood’s functional

capacity. Although we do not specify a form for this local

fitness in the general case — it is believed too domain

specific to do so — we note that it is plausible that such

a function be constructible. Specifically, the use of AD

generally suggests the gradual organization of discrete com-

ponents; this suggests that components generally play some

functional role, and that local interaction combines to form

global fitness. So long as the epistasis of cumulative local

interactions is not too high, some meaningful information can

be collected, or perhaps, deleterious combinations avoided.

We introduce several novel models: firstly, we introduce

a systematic means of generating random, bounded and

Taras Kowaliw and Wolfgang Banzhaf are with the Department of
Computer Science, Memorial University of Newfoundland, St. John’s, NL,
Canada, A1B 3X5 (taras@kowaliw.ca, banzhaf@cs.mun.ca)

connected two-dimensional neighbourhoods; secondly, we

introduce a novel toy problem in which environmental feed-

back is expected to play a major role, that of a highly

simplified vascular system; finally, we introduce two local

fitness functions for this domain, and explore their addition

to a standard form of AD, the Cellular Automaton (CA).

In this case, we demonstrate that the local fitness can be

included without increasing the asymptotic time required.

Through comparison between evolved and pre-

programmed strategies, we show that even very simple

strategies augmented with local fitness outperform the

evolved CA. Further, we show that augmentation of the

CA with local fitness improves performance further, both in

overall fitness and in computation time. Finally, we show

that augmentation of the AD with local fitness guidance

helps evolution cope with environmental perturbations

associated with increased problem difficulty, i.e., that

environmental feedback can help an AD respond to its

environment adaptively during development.

II. REVIEW

A. Embryogenesis and Environmental Feedback

A simple example of a means by which environmental

feedback might help with evolvability of an organism can be

seen in so called “amphibious plants” (e.g. Myriophyllum).

In this case, leaves grow both underwater and in dry air,

where the presence of water in a meristem’s immediate

neighbourhood will influence the type of leaf growth [1].

Hence, for the Myriophyllum, it is unnecessary to encode the

height of the water in the genome, the growth of the plant

will naturally select an appropriate height at which to change

leaf types. Indeed, examples of environmental influence on

the morphology of plants are easy to find.

There are examples in animal growth of the molding of

morphology by environmental influences as well. For in-

stance, the developing human brain is critically dependent on

sight during the third to sixth post-natal months: if deprived

of sight, a child will never gain a functioning visual system;

Or, if a single eye is deprived, then the second functioning

eye will coopt the first’s sensory connections permanently.

Compare this with the remarkable neural plasticity found in

later stages, where people temporarily blinded can regain

most function, even from artificial inputs. This suggests a

critical role for sensory input in guiding the molding and

pruning of neurons [2]. Vasculogenesis is another classic

example. Lowe et alia showed that the evolution of echino-

derms from bilaterals showed a remarkable plasticity in the

genetic subsystem governing growth of the vascular system,

where not only did existing genomic information adapt to

large morphological changes, but also to an alteration in



fundamental role (i.e. transport of water rather than blood)

[3]. This last example serves as an exemplar for our work

here, and we describe the process in greater detail below.

Vasculogenesis, and the related process angiogenesis, de-

scribe the formation of a vascular system in an organism.

The process is similar, and often aligned with, the formation

of lymphatic and nervous systems. Initially, a collection of

blood vessels are created de novo, from which modelling

and pruning create the distinct structures which comprise

the system. Processes of growth and organization are influ-

enced by several proteins, often stage- and organ-specific.

Vasculogenesis naturally promotes many constraints, such as

Murray’s law, in which the cube of the size of the parent

vessel is approximately the sum of the cubes of the child

vessels. [4].

We do not, at present, aim for a biologically plausible

model; The interested reader may consult the works of

Merks et alia for examples of simulations of the stages of

vasculogenesis based on the Cellular Potts model [5], [6].

The topic interests us as an example of a case in which

development is capable of generating an efficient design

without (we suspect) any genetic representation of the overall

morphology. This property, of course, has repercussions on

the evolvability of a seemingly complex design. We aim at

abstracting this important principle of vasculogenesis, that is,

the capacity to create an efficient transport system in a rela-

tively arbitrary environment using only local environmental

cues, and to explore the addition of such environmental cues

to the artificial case.

B. Developmental Systems and Cellular Automata

Artificial Developmental Systems (ADSs) are systems

which include a mid-step between representation and fi-

nal evaluation inspired by, but not necessarily resembling,

biological embryogenesis; It is generally hoped that this

mid-step process will bias produced phenotypes in fruitful

directions. There are several suspected mechanisms through

which desirable properties, especially evolvability, might be

achieved: regularities, local adaptation, biophysics, etc. Their

relative importance, however, is unknown. Indeed, Stanley

has recently introduced a model which relies on only one

such mechanism, regularities, doing away with a gradual

developmental stage altogether [7]. Here we concentrate on

the potential functional contribution of another mechanism,

local adaptation, through a cellular automaton-based model.

Cellular Automata (CAs) originate from Ulam and von

Neumann, in an attempt to describe a discrete counterpart

for continuous dynamical systems. A CA (here) is a discrete

space-time diagram, with two dimensions of space. Given

some configuration at time t, the next configuration in time

will be obtained by applying a transition function to each cell

(automaton) and its neighbourhood in parallel, the output of

which would determine the new state of the cell at time

t + 1. Transition functions are a complete specification of

each possible neighbourhood configuration associated with

an output cell state. For an comprehensive introduction to

CAs, see Ilachinski’s text [8]. Increasingly, CAs are used

as models of biological phenomena, including as models of

pattern formation [9] [10].

The concept of environmental feedback in an ADS has

been explored previously. Mech and Prusinkiewicz, in their

Open L-Systems, explored the addition of a communication

channel between an environment and a developing visual

plant model [11]. The environment was modelled as a

separate program to the organism, to which the (non-evolved)

genome would react, producing visually convincing models

of phenomena such as root growth and morphological plastic-

ity. Tufte et alia have explored the matter with regards to the

development of cellular automaton-based hardware design.

In their work, environmental fluctuations are expressed as

state changes in the cellular configuration, and are examined

with regards to the capacity of a genome to generate several

phenotypes [12], [13]. The notion of phenotypic plasticity

through environmental factors has also been explored in a

functional context by Kowaliw et alia, via the re-generation

of genomes at several different sizes [14], [15], and in

the generation of different phenotypes through different

environmental spatial geometries [15]. Our approach here

incorporates the latter ideas, the spatial geometry of the

environment. However, our other form of environmental

guidance, local fitness, is a digression from the current state

of the art.

C. Local Fitness

The concept of a local fitness function is not new to

Evolutionary Computation. For instance, it has been used in

Potter and De Jong’s framework for cooperative coevolution;

In this architecture, solutions are composed of smaller sub-

components, drawn from separated evolving populations. The

local fitness of a subcomponent is the expected increase in

fitness in the merged individual [16]. Further, there have been

applications of local fitness functions to standard genetic

algorithms as well, typically in helping to guide more intel-

ligent genetic operators (e.g. attempting to use local fitness

to help prevent deleterious mutations). Recently, this concept

has been extended by Aichour and Lutton to the design of

intelligent operators for genetic programming [17].

Much like these previous attempts, the local fitness func-

tion here is an attempt to capture some of the difficulty of

solving the global problem in a local sense. However, in

this work, the local fitness is used in the developmental

stage, meaning that it is applied pre-evaluation. Hence,

development becomes a hill-climbing process, where the

guided growth undertakes only steps which increase expected

fitness.

III. COMPUTATIONAL COMPLEXITY OF LOCAL

FITNESS-ENHANCED DEVELOPMENTAL SYSTEMS

We will describe an AD system as one which includes

a developmental stage between representation (genome) and

fitness value:

G × E
d
−→ E

f
−→ R (1)

where g ∈ G is the space of genomes, and E ∈ E is the

space of phenotypes (environmental configurations), and f



is the fitness function. We will say that d(g, E) → E′ is

the developmental step. The running time of d and f will

be written δ(n) and ϕ(n), respectively, where n = |E| is

the size of the environment. Evaluation of such a devel-

opmental genome typically requires time O(δ(n) + ϕ(n)).
Since evaluation is repeated often during a machine learning

optimization, ensuring fast evaluation is critical.

The obvious means of augmenting the developmental step

with environmental feedback would be to re-compute the

fitness at each step, using the change in values to guide

growth. This sort of approach (a global fitness-enhanced

AD, in our parlance), would require full evaluation at each

developmental step, or O(δ(n) ·ϕ(n)). Given that, in a real-

world application, evaluation f often dominates an evolu-

tionary design process, such an approach is likely to be

computationally expensive. Thus, more efficient alternatives

are desireable.

Imagine instead the use of a local fitness function - that is,

some function that evaluates the efficacy of a design in a local

neighbourhood. If we specify that the local fitness function,

independent of global fitness, be computable in constant

time, then augmentation of the AD (a blind local fitness-

enhanced AD), has an unchanged worst-case evaluation time:

O(δ(n) + ϕ(n)).
Better still, assume further that our developmental stage

is divided into steps (for instance, a discrete time which

governs cell actions), and can be decomposed into a time and

a cell function: δ(n) = δtime(n) · δcells(n). There are many

systems which could be decomposed in this manner, such

as L-Systems, parallel cellular growth systems, and iterative

graph re-writers. Then, we can consider the computation of

global fitness at the end of each time step, accompanied by

a local fitness function which utilizes that information at the

cellular level. If we require that again local fitness is constant

time, our evaluation time becomes: O(δtime(n)·ϕ(n)+δ(n)).
In the following paper, we will use a highly simplified

model of vasculogenesis as a domain of application, and two-

dimensional CAs as an ADS to explore these concepts. In

so doing, we will illustrate the above concepts.

IV. THE MODEL

A. A Highly Simplified Model of a Vascular System

Our problem is as follows: Given some two-dimensional

developmental environment, E ⊂ Z
2, including a “start”

square, we aim to design a network of cells capable of

distributing a resource to as many cells as possible from

a single source cell. Our task consists of “normal” cells

and “transport” cells. Beginning with the start cell, fluid

is distributed to all transport cells in the immediate von

Neumann neighbourhood recursively. Finally, any normal

cells which are bordered by a fluid-carrying transport cell

are considered “served”. The global fitness is the number of

“served” normal cells:

fglob(E) =
1

|E|

∑

c∈E











1; if colour(c) = “normal”

∧ c is “served”

0; otherwise.

(2)

Fig. 1. Examples of optimal configurations for toroidal environments of
size 4 × 4 and 5 × 5. Start cells are labelled with a yellow “S”. Transport
cells are bright red if connected to the start cell, very light red if not. Normal
cells are white if “served”, and dark grey otherwise.

where |E| is the total number of cells of colour “normal”

and “transport” in E. Hence, we aim to design a transport

system which covers as much of the environment as possible

in a connected fashion, but one which does not take up more

space than is necessary. Since the process is governed by a

flood-fill extending from the start cell, it can be accomplished

in time O(|E|).
In smaller cases, we can find the optima for fglob via brute

force. For example: there are 44 optimal configurations if E
is a torus of dimension 4×4; 126 at dimension 5×5; and 544

at dimension 5 × 7. Some examples are shown in Figure 1.

Note the presence of many distinct global optima, a property

we believe shared at higher cardinalities.

Global optimum for any large environment is likely to be

approximately fglob = 2

3
. This is evident from considering

such an optimum as a collection of Moore neighbourhoods,

of which nearly all would contain three transport cells:

although one or two transport cells could provide fluids to

all remaining cells in a neighbourhood, it is not possible

to simultaneously provide connectivity between surrounding

neighbourhoods with less than three transport cells.

B. Representation of Environments

Here we define a means of representing1 a general two-

dimensional connected subset of Z
2; Our goal is a systematic

way of describing environments which can be utilized in

further experiments without introducing significant bias. Fur-

ther, we desire environments: which are contiguous; which

envelop a specified “start” cell; in which all regions are

connected via a path of minimum width; which can be

described via a complexity measure (one which correlates

with problem difficulty); which can be generated with a

specified overall size. Finally, we desire a representation

which provides a good coverage of the space of all such

environments.

We will do so by introducing “barrier” cells into rect-

angular environments, where barriers are understood to be

inactive space-fillers. The remaining region of the rectangular

environment will be the environment proper. Further, the

environment will be completely surrounded by barrier cells.

We define the size of the environment, |E|, to be the number

of non-barrier, or “normal” cells.

Our approach will be based on the construction of Voronoi

regions in our rectangle surrounding randomly placed dots.

1Our thanks to Simon Harding for suggesting the use of Voronoi diagrams.



Fig. 2. An illustration of the generation of a random environment: (from left

to right) random selection of ten dots; construction of a Voronoi diagram;
labelling of regions as positive or barrier; flood-fill and fattening.

Fig. 3. Environments with dot complexities (from left to right) dC =

5, 20, 50, 100, 200.

The number of dots, dC, will control the number of Voronoi

regions. These regions will be labelled either “positive” or

not, where positive cells might become normal (i.e. elements

of the set), and non-positive cells are labelled barriers. The

probability that a region is labelled positive is controlled

through a system parameter pP . The start cell is used as a

guarantee of some non-empty positive central region; The

positive regions surrounding the start cell will be flood-

filled, and all connected cells will be labelled “normal”. This

normal region is then “fattened” to ensure that a path of width

at least three connects the whole positive area. The process

is described in more detail in Appendix A, and illustrated in

Figure 2.

It is clear that, barring “fattening”, any environment E
can be generated through such a method, if only through

setting dC = |R| and specifying every cell, where R is

the minimal rectangle including every non-barrier cell in E.

The dot-complexity dC of the environment will be explored

as a measure of environment difficulty; while not a perfect

measure, as trivial environments sometimes result from large

numbers of dots, informal visual inspection suggests that this

measure will work in statistical questions (see Figure 3 for

examples).

An important point in the generation of such environ-

ments is ensuring a consistent environmental size, which

we define as ǫ = |E|
|R| . To that end, we performed a

regression of ǫ relative to various system parameters. Using

the approach described above, 10 000 environments were

generated using parameters chosen randomly and uniformly

in the following ranges height, width ∈ {10, ..., 200};

dC ∈ {5, 2 max{height, width}}, and pP ∈ [0.1, 0.9].
Further, a normalized dot complexity was also calculated,

dC
2max{height,width} . For each randomly generated set of

parameters, the specified environment was computed, and

the proportion of normal cells ǫ was computed. It was

shown that ǫ was relatively independent of all parameters

(correlation coefficient |ρ| < 0.2) save pP (ρ = 0.8656,

p < 0.00001). We calculated a linear regression with inverse

pP ′ = ǫ′+0.1694
1.2486

, and a 95% confidence interval of 0.1659.

Henceforth, we will write ǫ(E) ∼ X to mean that with

probability greater than 0.99, ǫ(E) ∈ [X − 0.1659, X +

Fig. 4. Neighbourhoods: (a) VN-5; (b) Moore-9; (c) Cross-9; (d) VN-41.

0.1659]. We can achieve this by making at most four attempts

to generate an E in that range using our interpolated pP ′

value; in the unlikely cases that we do not succeed, we will

substitute the closest generated E.

C. A Highly Simplified Model of Vasculogenesis

Let our developmental environment, E ⊂ Z
2, be a

two-dimensional rectangular region, our alphabet be Σ =
{0, 1, 2} = {“normal”, “transport”, “barrier”}, and consider

our system governed by a discrete time. At initialization,

our environment begins with all states of colour “0” or

“2”, save the unique start cell, of colour “1”. At every

time step, we compute fglob. Time runs from t = 0 until

the “end of time”, defined either as the first t such that

fglob(Et+1) < fglob(Et), or when fglob has been static for

five time steps2.

The development of the space between time 0 and the

“end of time” will be referred to as vasculogenesis, or simply

as growth. Below, we discuss developmental systems which

control the form of vasculogenesis, interpreting the points

in E as “cells”, and specifying a transition function as a

genome; This is quite similar to cellular automata.

V. STRATEGIES

In this setion we outline a number of strategies for solv-

ing our vasculogenesis problem, some pre-programmed and

some evolved. The first strategy will be described in some

detail (Section V-A.1), and further strategies will follow the

general pattern. Note that in the introduction of fitness-based

strategies, we will lose the perfect parallelization typically

associated with Cellular Automaton-like systems. As a result,

strategies will output different results on different executions.

In outlining these strategies, we will discuss some two-

dimensional neighbourhoods about a central point. These

neighbourhood types, along with indexing, are illustrated in

Figure 4, where the central point is indexed 0.

We will define an non-null state cell as one which has at

least one “transport” cell in its Moore-9 neighbourhood.

Further, we define blind local fitness of any given neigh-

bourhood N to be the number of cells of colour “normal”

with at least one cell of colour “transport” in the immediate

2Originally, we intended to require strict increases in coverage, but due
to use of stochastic algorithms we risked premature termination.



Moore-9 neighbourhood, divided by the size of the neigh-

bourhood.

fblind(N) =
∑

ci∈N











1 ; if colour(ci) = “normal” ∧

c has transport 9-neighbour

0 ; otherwise.
(3)

It measures the number of “served” cells, making the

(possibly false) assumption that all transport cells in the

neighbourhood are “served”.

The definition of sighted local fitness is slightly more

involved. We begin by assuming that fitness has already

been computed in the environment, and that small changes

have been made to the neighbourhood since. Given such a

neighbourhood N , we first mark any transport cells “served”

in the original global fitness computation as “local served”.

Next, we flood-fill any connected transport cells in N ,

marking them as also “local served”. Finally, we mark any

normal cells neighbouring a “local served” transport cell as

also “local served”, and compute the number:

fsighted(N) =
∑

ci∈N



















1 ; if colour(ci) = “normal”

∧ c has local-served

transport 9-neighbour

0 ; otherwise.

(4)

A. Pre-programmed Strategies

1) Random Greedy Growth Strategies (RLG and RGG):

The randomized local greedy growth strategy (RLG) grows

a network from a single starting cell. At each time step, all

normal non-null state cells are chosen in random order. With

probability 1/3 we attempt to change the cell’s state to type

“transport”. State change is carried out only if local fitness

increases. Note that the order of processing of cells matters,

since the change of state will effect future computations

of fblind. Since fblind is computed using a static size of

neighbourhood (Moore-9), development time is not increased

in the limit, leading to a time of O(|E|2).
The RLG algorithm can be written:

1: initialize E0 with start cell

2: for time t = 1 to tfinal do

3: Environment Et := Et−1

4: List C of all non-null state cells c in Et

5: randomize(C)
6: for all c ∈ C do

7: if rand < 1/3 then

8: c′ := c
9: colour(c′) := 1

10: Neighbourhood norig := Moore-9 neighbourhood

about c
11: Neighbourhood nchanged := Moore-9 neighbour-

hood about c′

12: if fblind(nchanged) > fblind(norig) then

13: colour(c) := 1
14: end if

15: end if

16: end for

Fig. 5. Exemplars of the (top to bottom): local greedy growth (RLG);
global greedy growth (RGG); and global knockout (RGN) strategies.

17: end for

18: return Etfinal

The randomized global greedy growth strategy (RGG) is

identical to the randomized local greedy strategy, save that

global fitness fglob is used instead of local fitness fblind. This

increases development time to O(|E|3).

2) Randomized Knockout Strategies (RLN and RGN): The

randomized local knockout (RLN) strategy begins with an

environment filled with transport cells. At each time step,

each transport cell (in randomized order), is considered with

probability 1/3. If local fitness fblind about the point is

increased by changing the cell’s colour to normal, then the

action is undertaken. Its running time is O(|E|2).

The RLN strategy performed very poorly, almost imme-

diately devolving to a single served point. We’ve included

discussion of the strategy to highlight that the fblind local

fitness function has a limitation: it cannot see connectivity,

and hence cannot preserve it outside of a purely constructive

context.

The randomized global knockout (RGN) strategy is iden-

tical to the RLN strategy except that global fitness fglob is

used instead of local fitness. This increases running time to

O(|E|3).

Instances of the random strategies RLG, RGG, and RGN3

are shown in figure 5.

B. Evolved Strategies

1) Cellular Automata (CA): The CA strategy is a straight-

forward implementation of two-dimensional CAs. Represen-

tation consists of a cell state for each possible neighbour-

hood, where a cell state is either “normal” or “transport”.

This leads to a transition function representation of size

2 ·3|N |−1, where N is the neighbourhood type used. At each

time step, in parallel, each cell collects a description of its

3The RLN strategy is essentially a trivial version of the RGN strategy,
and hence is not illustrated.



local neighbourhood, queries the transition function for an

action, then changes its cell state.

2) Blind-Local Fitness Enhanced Constructive CA (BLF-

CCA): The BLF-CCA strategy includes the use of the fblind

fitness function as a guide for cell actions. That is, with

each considered cell action, the local fitness difference in

the local neighbourhood of executing or not executing the

action is computed, and the action is undertaken only if

fblind increases. Since the fblind function can be computed

in constant time, our running time is unchanged between the

CA and the BLF-CCA strategies: O(|E|2).

In designing the BLF-CCA strategy, we chose to use a

constructive CA, i.e., one in which a cell could change state

from “normal” to “transport”, but not vice versa. The reason

for doing so involves the failure of the development of the

pre-programmed RLN strategy, that is, the failure of fblind

strategy to adapt to the removal of cells due to its inability to

recognize connectivity. Note that the use of a constructive CA

removes most of the computational power of CAs generally,

by ensuring that a system always ends in a stable point.

3) Sighted-Local Fitness Enhanced CA (SLF-CA): The

SLF-CA strategy includes the use of the fsighted local

fitness function as a guide. With every developmental step,

global fitness is computed. Then, for every cell action, the

difference in fsighted is computed for the original and new

neighbourhoods, and the action is undertaken only if fsighted

increases. Since we compute global fitness at each time step,

and since fsighted is constant time, we have a running time

of O(δtime(|E|) · ϕ(|E|) + δ(|E|)) = O(|E|2).

Unlike the BLF-CCA strategy, any CA could be utilized

(i.e., the CAs are not constructive), widening the range of

possible growth.

4) Global Fitness Enhanced CA (GF-CA): The GF-CA

strategy is identical to the SLF-CA strategy, save that fglob

is computed for every cell action, and cell actions are only

executed if there is an expected increase. This leads to a

running time of O(δ(|E|) ·ϕ(|E|)) = O(|E|3). Even for this

relatively small domain of application, using a global fitness-

enhanced ADS is computationally expensive, with individual

evolutionary runs requiring several hours to complete.

An illustration of highly evolved individuals’ growth can

be seen in Figure 6.

VI. EXPERIMENTS

A. Experimental Setup

We use a typical Evolutionary Algorithm for evolution.

The genome consists simply of a description of the CA

transition function, that is, a list of bits corresponding to cell

states associated with neighbourhood descriptions. Operators

include a simple point-wise flip mutation, and an all-point

recombination operator. An informal parameter search was

carried out, and EA parameters maximizing the fitness of

the CA strategy were used for all other strategies. These

parameters were:

Fig. 6. Exemplars of the (top to bottom): CA strategy; BLF-CCA strategy;
SLF-CA strategy; GLF-CA strategy.

initial pop. size 400 pop. size 200

prob. mutation 0.01 prob. crossover 0.5

prop. elite 0.02 tran. func. nbhd Cross-9

fblind nbhd Moore-9 fsighted nbhd VN-41

The function o = fglob was used as an objective function. In

the case of several of the evolved strategies, BLF-CCA, SLF-

CA, and GF-CA, growth was a stochastic process. Indeed,

much variance was often seen using different random seeds.

Hence, for these cases, we used an altered optimization

function: the genome was expressed in the same environment

five times, and the optimization function o was defined to be

o = 5

√

∏

1≤i≤5

f i
glob (5)

where f i
glob was the global fitness of the i-th expression of the

genome. A product was chosen so as to encourage consistent

developmental results. Below, we report the average global

fitness, defined as

fglob =
1

5

∑

1≤i≤5

f i
glob (6)

B. Empty Environment Experiments

A series of experiments were undertaken using the various

strategies. Using an empty rectangular environment of size

30×30, each strategy was run 50 times, for 200 generations.

Below, we report the mean best fglob for each. Note that for

BLF-CCA, SLF-CA, and GF-CA we report the mean best

fglob.



strategy mean s.d.

pre-prog. RLG 0.600 0.005

RGG 0.606 0.005

RLN 0.041 0.031

RGN 0.595 0.008

evolved CA 0.448 0.039

BLF-CCA 0.658 0.004

SLF-CA 0.663 0.007

GF-CA 0.667 0.003

Evolutionary results over time for typical runs (runs in which

final fitness resembled mean) are illustrated in Figure 7.

The pre-programmed strategies, despite being quite sim-

ple, performed admirably well. Interestingly, the local fitness-

enhanced strategy RLG performed with the same efficacy

as the global fitness-enhanced strategy RGG, making the

excess computational time spent on computing global fit-

ness unnecessary. The global knockout strategy performed

approximately as well as RLG and RGG, while the local

fitness-enhanced knockout strategy performed dismally. The

latter’s poor performance illustrates that the fblind function

works in constructive scenarios, where previous connectivity

is guaranteed, while it does not when removing cells, as

a small gain in local fitness can exclude a large chunk of

connectivity. It should be further noted that all the pre-

programmed strategies do not optimize the layout of the

transport-veins, where the more efficient network (with two

spaces between veins) is sacrificed for greedy immediate

fitness gain (one space between veins).

The simple CA strategy performed very poorly, being

unable to catch up to the pre-programmed strategies despite

much evolution. It seems that the chaotic growth of CAs, and

the associated issues with evolvability, prove too daunting to

overcome in this context.

In contrast, the fitness-enhanced strategies BLF-CCA, SL-

CA, and GF-CA clearly all outperformed both the standard

CA strategy, and the pre-programmed strategies. This in

terms of both overall fitness and speed of convergence. It

is clear that the combination of fitness-enhancement and

artificial development is a strong boon in this context.

C. Dependency on Problem Complexity

The above experiments were repeated, this time allowing

for randomly generated environments. That is, at the be-

ginning of each run, a particular starting environment was

generated, with ǫ ∼ 0.6, and dC ∈ [10, 75] chosen randomly

and uniformly. For each strategy, we also computed the

Spearman coefficient (ρ) between the variables dC and fglob.

As before, we substituted fglob for the fitness-enhanced CAs.

Each strategy was evaluated through fifty runs, with results

summarized below:

Fig. 7. Comparative plot of evolutionary success over time for (top) the
empty environment, and (bottom) a random environment.

strategy mean s.d. ρ

RLG 0.578 0.027 |ρ| < 0.3
RGG 0.587 0.008 |ρ| < 0.3
RGN 0.573 0.011 |ρ| < 0.3

CA 0.316 0.079 -0.608 (p < 0.001)

BLF-CCA 0.635 0.010 -0.603 (p < 0.001)

SLF-CA 0.611 0.024 |ρ| < 0.3
GF-CA 0.640 0.007 |ρ| < 0.3

The course of evolution for typical runs is illustrated in

Figure 7.

All strategies performed more poorly than in the empty

environment, as would be expected in a more difficult

domain. The general trend amongst the evolved strategies

was maintained. The CA runs indicate that the non-fitness

enhanced strategy was, in fact, subject to problem complexity

as measured by dC. That is, with high probability, as dC
increased, the efficacy of the strategy decreased. This effect

was also seen with the BLF-CCA strategy.

It is interesting to note that there is little to no recognizable

dependency on problem complexity (|ρ| < 0.2) for all

pre-programmed strategies. Arguably, the pre-programmed

strategies are the simplest, and are likely the most adaptive

as a result. Similarly, the GF-CA and the SLF-CA strategies



were also resistant to problem complexity (|ρ| < 0.3)

suggesting that the combination of fitness-enhancement and

a robust developmental programs can overcome problem

complexity in this context.

In these experiments, the BLF-CCA strategy outperformed

the SLF-CA strategy. At first glance, it may appear that the

former is simply superior to the latter, and indeed, in this

simple domain of application, it likely is. However, we re-

iterate that the constructive cellular automaton is a much

simpler machine than the general CA, and hence, could not

be expected to extend its success to more difficult problem

domains.

VII. CONCLUSIONS

In this paper, we have motivated the use of a local fitness

function during development, and provided a concrete exam-

ple of its use in a developmental task. This re-formulation

of AD allows for the use of development as a form of

guided hill-climbing. This is a contrast to the usual means

of including environmental information in the developmental

stage, as it includes a notion of local success, rather than

simply an addition of new inter-cellular signals. To the best

of our knowledge, this is the first time that a concept of local

fitness has been applied in the developmental stage.

In the process, we have introduced a novel means of sys-

tematically describing bounded, connected two-dimensional

geometric environments, and a novel toy problem, our sim-

plified vasculogenesis problem.

It was shown that relative to the use of evolved cel-

lular automata, simple pre-programmed random strategies

augmented with local fitness were a more effective method

of solution design. Additionally, that local-fitness enhanced

cellular automata could approach expected global fitness, far

outperforming the non-enhanced CAs and the simple pre-

programmed strategies. These local fitness-enhanced strate-

gies could be executed without increase in asymptotic com-

putational complexity.

Further, it was shown that, unlike CAs, (global or local)

fitness-enhanced ADSs were more resistant to a measure of

problem difficulty associated with our geometric environ-

ments.

REFERENCES

[1] E. Coen, The Art of Genes: How Organisms Make Themselves.
Oxford University Press, 1999.

[2] P. R. Huttenlocher, Neural plasticity : the effects of environment on

the development of the cerebral cortex. Harvard University Press,
2002.

[3] C. J. Lowe and G. A. Wray, “Radical alterations in the roles of
homeobox genes during echinoderm evolution,” Nature, vol. 389, pp.
718–721, 1997.

[4] S. F. Gilbert, Developmental Biology, 8th ed. Sinauer Associates Inc.,
2006.

[5] R. M. H. Merks and J. A. Glazier, “Dynamic mechanisms of blood
vessel growth,” Nonlinearity, vol. 19, pp. C1–C10, 2006.

[6] R. M. H. Merks, S. V. Brodsky, M. S. Goligorsky, S. A. Newman, and
J. A. Glazier, “Cell elongation is key to in silico replication of in vitro
vasculogenesis and subsequent remodeling,” Developmental Biology,
vol. 289, no. 44-45, 2005.

[7] K. Stanley, “Compositional pattern producing networks: A novel
abstraction of development,” Genetic Programming and Evolvable

Machines, vol. 8, pp. 131–162, 2007.

[8] A. Ilachinski, Cellular Automata: A Discrete Universe. World
Scientific, 2001.

[9] A. Deutsch and S. Dormann, Cellular Automaton Modelling of Biolog-

ical Pattern Formation: Characterization, Applications and Analysis.
Birkhauser, 2005.

[10] S. Camazine, J. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, and
E. Bonabeau, Self-Organization in Biological Systems. Princeton U.
Press, 2001.

[11] R. Mech and P. Prusinkiewicz, “Visual models of plants interacting
with their environment,” in SIGGRAPH ’96 Proceedings, vol. 30,
1996, pp. 397–410.

[12] G. Tufte and P. C. Haddow, “Extending artificial development: Ex-
ploiting environmental information for the achievement of phenotypic
plasticity,” in Evolvable Systems: From Biology to Hardware, 2007.

[13] G. Tufte, “Evolution, development and environment toward adaptation
through phenotypic plasticity and exploitation of external information,”
in Artificial Life XI (ALIFE XI), 2008.

[14] T. Kowaliw, P. Grogono, and N. Kharma, “Bluenome: A novel
developmental model of artificial morphogenesis,” in Genetic and

Evolutionary Computation - GECCO ’04, K. D. et al., Ed. Springer-
Verlag, 2004.

[15] ——, “Environment as a spatial constraint on the growth of structural
form,” in GECCO ’07: Proceedings of the 9th annual conference on

Genetic and evolutionary computation. New York, NY, USA: ACM,
2007, pp. 1037–1044.

[16] M. A. Potter and K. A. D. Jong, “Cooperative coevolution: An
architecture for evolving coadapted subcomponents,” Evolutionary

Computation, vol. 8, no. 1, pp. 1–29, 2001.
[17] M. Aichour and E. Lutton, “Cooperative co-evolution inspired op-

erators for classical GP schemes,” in Nature Inspired Cooperative

Strategies for Optimization (NICSO 2007), 2007, pp. 169–178.

APPENDIX

A. Generation of a random environment

Require: Rectangular environment E, start cell s, dot-complexity
dC, probability of positive pP

1: initialize List D of dC dots
2: D[0] := s
3: D[0].positive := true
4: for dotIndex = 1 to dC − 1 do
5: D[dotIndex] is a random point in E
6: D[dotIndex].positive := (rand < pP ? true : false)
7: end for
8: compute Voronoi diagram about dots
9: for all Cell c ∈ E do

10: if closestDot(c, D).positive = true then
11: c.positive := true
12: end if
13: end for
14: List pE is all positive c ∈ E connected to s through flood fill
15: for all Cell c ∈ E do
16: if c ∈ pE then

17: colour(c) := “normal”
18: else
19: colour(c) := “barrier”
20: end if
21: end for
22: E′ := E
23: for all Cell c ∈ E′ do
24: if c has a neighbour of colour “normal” in its Moore 9-

neighbourhood in E then
25: colour(c) := “normal”
26: end if
27: end for
28: return E′

Java source code for environment generation is freely

available at http://kowaliw.ca/envs.html


