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ABSTRACT

In this work we study open-ended evolution through the
analysis of a new model, HetCA, for “heterogeneous cellular
automata”. Striving for simplicity, HetCA is based on classi-
cal two-dimensional CA, but differs from them in several key
ways: cells include properties of “age”, “decay”, and “quies-
cence”; cells utilize a heterogeneous transition function, one
inspired by genetic programming; and there exists a notion
of genetic transfer between adjacent cells. The cumulative
effect of these changes is the creation of an evolving ecosys-

tem of competing cell colonies. To evaluate the results of our
new model, we define a measure of phenotypic diversity on
the space of cellular automata. Via this measure, we con-
trast HetCA to several controls known for their emergent
behaviours—homogeneous CA and the Game of Life—and
several variants of our model. This analysis demonstrates
that HetCA has a capacity for long-term phenotypic dynam-
ics not readily achieved in other models. Runs exceeding one
million time steps do not exhibit stagnation or even cyclic
behaviour. Further, we show that the design choices are well
motivated, as the exclusion of any one of them disrupts the
long-term dynamics.

Categories and Subject Descriptors

F.1.1 [Computation by Abstract Devices]: Models of
Computation—Self-modifying machines; I.2.2 [Artificial In-
telligence]: Automatic Programming—Program synthesis

Keywords

cellular automata, open-ended, evolution, genetic program-
ming, artificial ecosystem

1. INTRODUCTION
It is a truism that the complexity of life increases with

time, even if the means or measures of it are controver-
sial. Recreating this effectively endless self-generation of
new mechanisms and capabilities would be fascinating for
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its insight into our own origins, and enticing as a harness-
able creative force. In this paper, we introduce a new artifi-
cial life model based on a discrete dynamical systems frame-
work. We have extended classical 2D cellular automata
(CA), our chief modification being the allowance for het-
erogeneous transition functions. These changes convert a
CA system into a new kind of “ecosystemic” model, where
different genomes compete for existence. The value of such a
model resides precisely in its simplicity: we aim to observe
that long-term dynamics can be achieved quite naturally,
given appropriate and plausible hypotheses. To demonstrate
this open-endedness, we will show that our device is capable
of supporting long-term dynamical behaviour, more so than
control models such as homogeneous CA and the Game of
Life. In particular, we will exhibit examples of the strate-
gies discovered by our system, which are characterized by
the emergence of competitive behaviour.

Our paper is organized as follows: in the remainder of
this section, we review open-ended evolution and cellular
automata. Next, we introduce our novel modifications to
cellular automata, HetCA (for “heterogeneous cellular au-
tomata”), and describe their typical effects. Following this,
we define a measure of phenotypic diversity and use it to
illustrate the long-term dynamics of HetCA relative to sev-
eral controls. Finally, we explore some specific examples of
system outputs to discuss their behaviour qualitatively.

1.1 Artificial Life Models
A major motivation for work in artificial life is to create

open-ended evolution, or systems in which novel artifacts are
continuously produced. The first example of work of this
kind, by Barricelli, consisted of a one dimensional matrix
of simple rules which would copy and move [10]. Perhaps
the best known Alife model, however, is Ray’s Tierra [20].
In this world, there is competition between replicating com-
puter programs in a virtual machine. Later, inspired by
Tierra, another evolutionary system called Avida became
popular and was extended in many directions [1]. High-
level systems exist as well, where agents execute complex
predefined functions, such as eating or fighting in Polyworld
[28]. In all these cases, there is no particular specified goal:
interesting and sometimes unexpected phenomena emerge
from the interaction of individuals and their environment.

An important insight into the majority of such successful
systems is that they involve ecosystemic interactions. Sev-
eral researchers [8, 21, 14] claim that ecosystemic models are
well suited to the generation of life-like behaviours, and per-
haps even creativity. Further, an artificial system shown to



pass Bedau et al.’s test for unbounded evolutionary activity
had its success attributed to ecosystemic interactions [5].

1.2 Cellular Automata
Cellular automata are an abstract framework created by

von Neumann and Ulam in the 1940’s to study self-replicating
machines, which soon became a general model of discrete dy-
namical systems. Since then, CA have been intensely stud-
ied experimentally and theoretically [12, 27].

Here, by “classical” two-dimensional CA we mean:
• a toroidal lattice “world” of cells, W = {c = (x, y)},

with |W | = w × h (width and height, here 800× 600)
• a neighbourhood for each cell: ν(c) = {c, c1, ..., c|ν|},

where |νV| = 5 denotes the von Neumann neighbour-
hood and |νM| = 9 the Moore neighbourhood.

• a discrete time, t = 0, 1, ...
• an alphabet of cell states, Σ = {s1, ..., s|Σ|}
• a state s(c, t) ∈ Σ for each cell c ∈ W at each time t

• a single system-wide transition function ϕ : Σ|ν| → Σ
A CA is initialized with random states across the world. At
time t+ 1, each state is updated in parallel according to

s(c, t+ 1) = ϕ(s(ν(c), t)),

where s(ν(c), t) = {s(c, t), s(c1, t), ...} is a |ν|-tuple repre-
senting the collective state of c’s neighbourhood including
itself. Therefore, an uncompressed representation of a CA
transition function requires |Σ||ν| elements, or a listing for
every possible collective neighbourhood state, and the total

number of such rules is an astronomical |Σ||Σ||ν|

.
Cellular Automata are known to be a model of compu-

tation, as they can simulate a universal Turing machine
[27]. Even some simple CA have the property of compu-
tational universality, such as Conway’s Game of Life, a two-
dimensional CA in which binary cells switch on or off ac-
cording to a simple counting rule [6]. Furthermore, CA—or
minor variants thereof—are often used as predictive mod-
els of natural phenomena [7, 27], artificial life models of
self-reproduction [22, 18, 29], and models of morphogenesis,
sometimes as part of the creation of engineered design [15,
17, 9, 25, 16, 2].

1.3 Evolutionary Cellular Automata
Given the importance of CA as models, and the size of

the space involved, the search for “useful” CA rules is an
attractive but difficult problem. There are several theoreti-
cal results on the impossibility of predicting analytically the
outcome of a given CA rule set starting from a given configu-
ration. The reverse attempt at generating local rules to cre-
ate a target global pattern is also not possible in the general
case. Under these constraints, a natural choice for exploring
CA with desired properties is an evolutionary search. Unfor-
tunately, CA are difficult to evolve näıvely [11, 13], and when
used in an application, variants of the traditional cellular au-
tomaton framework are often used to improve evolvability
[15]. There are several attempts to use representations in-
spired by genetic programming (GP) for the (homogeneous)
transition function, often in the context of generating self-
replicating structures [18, 3].

A key feature of traditional CA resides in a consistent
transition function for all cells, making them good models
of homogeneous physical laws or intra-organismal cellular
growth. However, some experiments have also explored the
use of heterogeneous transition functions [26, 23, 24].

Algorithm 1 HetCA update rule: accepts a world state
s(W, t) = {s(c, t)}c, outputs the next world state s(W, t+1).

for each cell in the world (c ∈ W ) do
increment cell age → a(c, t+ 1) := a(c, t) + 1
if cell is in quiescent state? (s(c, t) = q) then

transfer genome from random eligible neighbour →
ϕc,t+1 := (Φc,t 6= ∅) ? U [Φc,t] : 0

if transfer happened? (ϕc,t+1 6= 0) then
update state → s(c, t+ 1) := ϕc,t+1(s(νM(c), t))
reset age → a(c, t+ 1) := 0

end if
else if cell is in decaying state? (s(c, t) = d) then

if cell older than decay end? (a(c, t+1) > adec) then
set state to quiescent → s(c, t+ 1) := q

end if
else if cell is in living state? (s(c, t) ∈ Λ) then

if cell older than life end? (a(c, t+1) > amax) then
set state to decaying → s(c, t+ 1) := d
reset age → a(c, t+ 1) := 0

else
transfer genome from eligible neighbour →

ϕc,t+1 := (Φc,t 6= ∅) ? U [Φc,t] : ϕc,t

possibly mutate genome with probability pmut →
ϕc,t+1 := mutate(ϕc,t+1) (see Section 2.4)

update state → s(c, t+ 1) := ϕc,t+1(s(νM(c), t))
end if

end if
end for

2. THE HETCA MODEL
Our model HetCA diverges from classical 2D cellular au-

tomata in three ways:

• cells have properties of decay and quiescence;
• each cell contains its own transition function, also called

genome, which has the ability to evolve over time and
be transferred to its neighbours;

• these genomic transition functions are represented in
a parsimonious way (see Section 2.2).

None of these concepts alone is novel: their conjunction,
however, is. In short, HetCA is initialized as a world state
s(W, 0) of cells with randomly initialized state values and
genomes. We will refer to cells which are neither decaying
nor quiescent as living cells. For each cell inW , the following
processes run in parallel:

• age: old living cells become decaying cells, old decay-
ing cells become quiescent

• transfer: cells can accept genetic material from living
neighbours, which can make quiescent cells living cells
again.

• mutate: a living cell’s genetic material can change
• update: a living cell executes its genome, i.e. applies

its transition function to its neighbourhood

A formal description is available in Algorithm 1. We de-
scribe these processes in more detail below.

2.1 Cell Quiescence and Decay
Since the HetCA alphabet comprises two special states,

“quiescent”and“decay”, and the other states are “living”, we
denote it here by Σ = {q, d} ∪ Λ, where Λ = {l1, ..., l|Σ|−2}.
Our metaphor is that living cells “age” and eventually “die”,
becoming inert for some period of time. During the decay



process, they continue ageing and eventually become quies-
cent, creating “free space”.

A living cell or decaying cell c ages by incrementing an
internal counter a(c, t). If a living cell’s counter passes a
threshold amax, its state is converted to decaying: s(c, t) = d,
its genome is discarded, and its age is reset: a(c, t) = 0. If
a decaying cell’s age counter passes another threshold, adec,
then it is turned into a quiescent cell: s(c, t) = q.

Our motivation for including decay and quiescence was to
create a form of competition for the cells. Decaying matter
is a challenge for cell colonies, as it makes simple maximal
growth unsustainable: cells need to“learn”to survive around
decay, e.g. use it as a means of defending their genetic ter-
ritory. To encourage this trend, we set the amount of time
necessary for the elimination of decay to a much larger value
than the lifespan of a living cell: adec ≫ amax.

2.2 Heterogeneous Transition Functions and
Genetic Transfer

By “heterogeneous” CA, we mean that each living cell
c contains its own (potentially unique) transition function,
which may also vary over time, thus is denoted by ϕc,t. The
world W is initialized with a uniform random sampling of
cell states {s(c, 0)}c∈W and transition functions {ϕc,0}c∈W .
Then, each cell determines its next state according to its
own transition function: s(c, t+ 1) = ϕc,t(s(νM(c), t)).

Moreover, a transition function can be randomly trans-

ferred between neighbouring cells, but under two conditions:
only (1) from a living cell to a living or quiescent cell, and
(2) if this function is “resolved” in the new neighbourhood
around that cell, meaning that its output must be a living
cell, too. The motivation for this requirement is to discour-
age random occurrences of decaying and quiescent cell states
because these states are “sinks” (as they are associated with
a loss of transition function, hence are not updated).

We now describe this process more formally. We will use
νM to resolve transition functions, and νV to chose neigh-
bourhoods for resolution. Given a transition function ϕ, we
denote by Rt(νM(c), ϕ) the fact that a neighbourhood νM(c)
“resolves” ϕ at time t and define it by

Rt(νM(c), ϕ) ⇔ ϕ(s(νM(c), t)) ∈ Λ.

We also denote by λt(c) the subset of νV(c) containing the
living neighbours of c at t: λt(c) = {c′ ∈ νV(c) |s(c′, t) ∈ Λ}.
Then, if cell c is living or quiescent at time t, it may receive
at time t + 1 the transition function from one of its living
neighbours c′ chosen randomly, only if that new function is
resolved the current neighbourhood state of c. This reads

ϕc,t+1 = U [Φc,t] , where

Φc,t = {ϕc′,t | c′ ∈ λt(c) and Rt(νM(c), ϕc′,t)}

is the set of eligible neighbouring transition functions, and
U denotes a uniformly random draw from a set of elements.
Note that if the original cell c was quiescent, the set of neigh-
bouring transition functions might be empty. In this case,
there can be no transfer and c remains quiescent.

2.3 Transition Function Representation
We now describe the genomic format of ϕc,t. Given that

uncompressed transition functions require an enormous state

space |Σ||Σ||ν|

, and also recalling that transition functions
are notoriously difficult to evolve, we elected to use a form of

Figure 1: Example CA-LGP program in pseudo-java
notation. This program accepts a von Neumann (4-
cell) neighbourhood, and assumes an alphabet of two
cell states, Σ = {0, 1}. It first computes the number
of state-1 cells in the neighbourhood, then the num-
ber of state-0 cells. Finally, it outputs the central
state reflecting the majority. Note the presence of
neutral code, displayed in grey.

compression of their genomic representation. To this end, we
developed a new representation for CA transition functions
inspired by linear genetic programming (LGP) [4]. LGP is
a desirable choice as its programs are easy to initialize and
mutate, fast to execute, naturally modular and resistant to
bloat, and make use of neutral code, which is believed to
increase evolvability [4, 19].

We name our new representation of ϕ a CA-LGP pro-
gram. Like any CA transition function, it maps the space of
neighbourhood states to a new cell state: Σ|ν| → Σ, but also,
like any LGP representation, it provides an evolvable repre-
sentation framework in which ϕ can be decomposed into an
alphabet of elementary functions tuned by a few parameters.
A CA-LGP program ϕ consists of:

• a list of nreg = |ν|+ |Σ|+nadd registers, written {Ri}:
– |ν| neighbourhood registers holding the state val-

ues s, the input to the program
– |Σ| state registers, genetically-specified constants
– nadd additional registers, also genetically-specified

constants

• a list of at most nprog program statements, each of the
form Ri = op(Rj , Rk) for some operator op and some
register indices i, j, k.

• a return statement, which returns the state associated
with the maximum value state register.

An example of CA-LGP program is shown in Figure 1.



Table 1: Function set.
op. name action on inputs (x, y)

abs |x|
plus x+ y
delta 1, if |x− y| < 1/10000; 0 o.w.
dist |x− y|
inv 1− x

inv2 safeDiv(1, x)
magPlus |x+ y|

max max{x, y}
min min{x, y}

safeDiv x/y if |y| > 1/10000; 1 o.w.
safePow xy, if defined; 1 o.w.
thresh 1, if x > y; 0 o.w.
times xy
zero 1, if |x| < 1/10000; 0 o.w.

2.3.1 CA-LGP Genetic Initialization

A CA-LGP program can be initialized randomly by:

• choosing a number of additional registers
• specifying initial values for the state registers and ad-

ditional registers with integers chosen uniformly ran-
domly in the range {0, ..., |ν|}. This maximum value is
small enough to not encumber evolvability, but large
enough to potentially act as a divisor for normalization
(say, to compute averages).

• specifying each program statement by selecting four
values uniformly randomly for i, j, k, and op, among
the available registers and function set (Table 1).

2.4 Genetic Mutation
Given some particular CA-LGP, we can apply a mutation

operator to generate a genetically similar CA-LGP. For this,
we randomly choose either a micro- or a macro-mutation:

• Micro-mutation: for each additional register and for
each program statement, a mutation is applied with a
small probability and re-initializes one component of
the statement.

• Macro-mutation: we choose one of the following, with
equal probability:

– If the program size is less than maximum nprog, a
randomly initialized program statement is added.

– If the program size is greater than 2, a randomly
selected program statement is removed.

The probability of a living cell being mutated, i.e. executing
the above algorithm, is set to a constant pmut = 0.0008.

3. MODEL BEHAVIOUR
As previously mentioned, HetCA is initialized with a uni-

formly random mixture of cell states and genomes. The
vast majority of genomes turn to quiescence or decay within
the first few time steps. This is not surprising since two of
our cell states, q and d, are sinks, and randomly initialized
genomes have no reason to avoid such states.

Usually, a small number of genomes (between one and
three) survive this initial extinction, forming small groups
of cells in between fields of decay1. Once decaying cells
turn to quiescent, these surviving clumps quickly grow to

1It is not uncommon for all genomes to die following the initial ex-
tinction events, either immediately (before iteration 200) or, less
frequently, after the first re-growth stage (before iteration 1500).
This leaves a trivial world devoid of genomes. Given our par-

cover the entire world. This often leads to a second or even
third extinction event, after which the change from decay
to quiescence becomes desynchronized. Usually, these early
extinction events disappear before time step 10,000.

Following this, various populations come and go, that is,
loose clusters of similar phenotypic patterns can be seen
throughout the world, with new patterns materializing and
old patterns disappearing with time. Occasionally, a new
phenotypic pattern will emerge and quickly cover the entire
world, indicating that a beneficial mutation has occurred.
Informal experimentation convinced us that using different
parameter values for the size of the world, and for amax and
adec, led to similar results, qualitatively speaking. The val-
ues chosen for experimentation in the following sections are
largely arbitrarily, and we expect similar values to produce
the same trends.

Our motivation for including quiescent and decay types
was to encourage competition. Specifically, we expected
genomes to “learn” to use decay as a barrier for their “ter-
ritory”, which would allocate them space to grow but block
genetic transfer from neighbouring cells. Indeed, in many
runs we have observed periods where populations selected
voluntary decay with high probability. Since voluntary de-
cay is a form of “genetic suicide”, we view this as evidence
that indeed, there are evolvable means of exploiting decay
for survival advantage. Figure 2 shows one such successful
example of a species relying on voluntary decay.

4. PHENOTYPIC DIVERSITY
To quantify the qualitative results seen above, we designed

a series of measures of the diversity of the system. The no-
tion of “genotypic distance” was rejected, however: given
that most transition functions ϕ encounter only a small pro-
portion of all potentially available neighbourhood states, any
representation of ϕ inevitably contains a lot of meaningless
information, which would add too much noise to a direct
comparison. This difficulty in measuring the distance be-
tween genetic programs, or any computer program for that
matter, is well known. Therefore, we chose to focus on mea-
suring the differences in phenotypic patterns over time, in-
directly measuring the arrival of new “species” via the orga-
nizational behaviour that they exhibited in the world.

4.1 Choice of a phenotypic diversity measure
Our goal is to automatically measure the phenotypic pat-

terns associated with the speciation events observed above.
This would allow us to detect these events and estimate the
number of species in our world, keeping in mind that genom-
ically distinct cells can be phenotypically indistinguishable
from each other. Formally, a “species” here refers to a family
of genomes {ϕc,t} which have identical phenotypic effect in
the world (and, naturally, should not be confused with a cell
state s ∈ Σ, which any cell of any species may potentially
assume). Thus, we want to define a metric that shows max-
imal variance for the events that we consider significant in
our qualitative observations.

The simplest metrics involve the number of cells in each
state (i.e. each colour in Figure 2) at each time step. We

ticular parameters, these extinction events occur approximately
75% of the time. In these cases we simply restart the simulation,
which is not computationally expensive since the run time to an
extinction is short.



t = 1350: Two distinct genomes have gen-
erated two colonies. One is sparse, making
prodigious use of voluntary decay; the sec-
ond, less sparse, grows more quickly.

t = 1950: The two species have percolated,
with the less sparse species occupying more
space.

t = 3300: The sparse species has eliminated
the other species entirely.

Figure 2: View of a HetCA run (best viewed in colour). Quiescent cells are drawn in black, decay cells in
grey, and living cells are drawn in other colours based on state.
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Figure 3: Plot of the number of cells by state over
time in a typical HetCA run. The steep increases
and decreases in the early iterations correspond to
initial periods of rapid growth and extinction.

deal here with five different living states (Figure 3) and de-
note these metrics by {Ni(t)} with i = −1, 0, 1, ..., 5, where
i = −1 and 0 represent states q and d respectively (thus
here, |Σ| = 7 and |Λ| = 5). However, while these time
variations in “isostate” population sizes (on the long term)
may constitute some indication of genotypic changes in the
world, hence changes in species, it is at best highly indirect
(again, states are not genotypes). We cannot exclude the
possibility that several distinct species generate similar pro-
portions of cell states. In fact, given the incremental nature
of evolution, this possibility is very likely.

Our first attempt at a better diversity measure is based
on entropy. We define the spatial frequency of a given state
si ∈ Σ as ρ(si) = Ni/|W |, and define the global entropy by

H(t) =
1

log |Σ|

|Λ|∑

i=−1

−ρ(si) log ρ(si).

Next, we measure the variance of the distribution of cell
states. First, we determine the “median” cell state smed, i.e.
the state whose frequency of occurrence is median. From

this, we write the “gross” cell variance in the world as:

σgross =
1√
|W |

(
∑

c∈W

(
1− δ(s(c), smed)

)
)1

2

=
√

1− ρ(smed),

where δ(si, sj) is the Kronecker delta between two states.
We also tried versions of σgross involving only living cells
(i.e. i = 1, ..., |Λ|) but without significantly different results.

To measure the local organization of cell states, we would
like a continuous metric showing the divergence of a particu-
lar neighbourhood from the “typical” neighbourhood. How-
ever, our cell states are distinct types with no natural order-
ing, making it difficult to define a “state distance”. Initial
attempts using δ were not particularly discriminating. In-
stead, we based our metric on the frequencies of cell states.

First, we compute smax, smin ∈ Σ, the states which occur
with maximum and minimum frequency, respectively. We
define the normalized frequency of each state si ∈ Σ to be:

ρ̂(si) =
ρ(si)− ρ(smin)

ρ(smax)− ρ(smin)
=

Ni −Nmin

Nmax −Nmin
.

Next, for each cell c ∈ W we compute the local state fre-

quency mean and local state frequency variance as

µloc(c) =
1

9

∑

c′∈νM(c)

ρ̂(s(c′)) and

σloc(c) =
1

3




∑

c′∈νM(c)

(
ρ̂(s(c′))− µloc(c)

)2




1

2

.

This last measure allows us to quantify how different a par-
ticular local neighbourhood is from the expected cell states
in a more continuous way. Using σloc, we can now define
the global mean and global variance (both of the local state
frequency variance) over the world as

µglob =
1

|W |
∑

c∈W

σloc(c) and

σglob =
1√
|W |

(
∑

c∈W

(
σloc(c)− µglob

)2
)1

2

.

The global measure σglob is an indication of the degree of
“distinctiveness” of the neighbourhoods of the world relative
to the expected neighbourhood. Thus it is sensitive not only



to differing proportions of cell states over space, but also to
the local structure of those cell states.

4.2 Comparison of model versions
To demonstrate the capacity of HetCA to generate long-

term phenotypic diversity, we contrast it with several control
groups:

• HetCA-a4: HetCA with amax = 4 and adec = 1850.
• HetCA-a7: HetCA with amax = 7 and adec = 1850.
• HetCA-noDec: HetCA with amax = 4 and adec = 0.
• HetCA-noMut: HetCA-a4 with pmut = 0, i.e. all

genomes remain as initialized.
• ClassicCA: a randomly initialized classical CA, in

which the universal transition function ϕ was also gen-
erated randomly (by CA-LGP).

• GoL: the classic Game of Life in a randomly initialized
world and with a binary alphabet Σ = {0, 1}.

First, to develop our intuition, we show some typical evo-
lution graphs for the σglob metric for each of the above
groups (Figure 5). In these particular runs, we see that
HetCA-noMut, ClassicCA, and GoL are all nearly trivial,
in the sense that there are no significant phenotypic events
happening in any of them. This was expected and con-
tributes to validating our measure of diversity: since these
three controls are all non-evolutionary, they are likely to
produce homogeneous behaviour, which is reflected by a flat
diversity curve. In contrast, both HetCA curves (red and
blue) show very substantive changes over time, while also
displaying (noisy) plateaus during certain intervals. The
HetCA-noDec curve (green) also shows significant changes
over time.

To be sure, these three non-evolutionary models are the-
oretically capable of universal behaviour, thus in principle
can generate patterns that would maximize our measure.
Yet, our intuition is that these sorts of configurations are
very rare. Interestingly, the ClassicCA model generates be-
haviour that might be characterized as“chaotic”by CA stan-
dards (i.e. CA class 3) [27]. Yet, these cases typically do not
register as “diverse” by our metric because they typically
involve the repetition of similar regions across space.

HetCA-noDec, which is an evolutionary group, generates
more interesting results. In this case, the curve is largely
random, increasing and decreasing without any apparent
pattern. Our hypothesis is that this behaviour is due to
a lack of competition, i.e. genomes have little means to de-
fend themselves against competitors, hence the populations
fluctuate randomly.

The HetCA-a4 and a7 runs, however, appear to generate
larger plateaus with dramatic changes interspersed, the sort
of phenomena that could be associated with “punctuated
equilibria” of evolutionary innovation.

After looking at these graphs, we now want to compare
these groups more quantitatively. To this aim, we define a
single-value statistic, the phenotypic variance, as follows:

VT [σ] =
1√
T

(
T−1∑

t=0

(σ(t)− ET [σ])
2

)1

2

,

where σ stands for σglob, T is some total time of observation,
and ET [σ] is the mean of σ(t) over time, written:

ET [σ] =
1

T

T−1∑

t=0

σ(t)
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Figure 4: Correlation between phenotypic events
and diversity measures: (top) a plot of our proposed
measures over time; (below) screen shots of partic-
ular iterations corresponding to significant events.
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Figure 5: Plot of the σglob measure over time for HetCA (with two values of amax) and four control groups.
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Figure 6: Comparison of values for VT [σ] by group,
each for two durations T = 100k and T = 400k.

Note that VT [σ] is the variance over time of a measure
that is itself an instantaneous variance over space. Next, we
report the experimental average phenotypic variance (APV)
VT [σ] for each control group calculated over 100 independent
runs based on random initial conditions. Figure 6 shows for
each group a compact boxplot representing the distribution
of VT [σ] values over different runs and their average VT [σ].

Both the ClassicCA and GoL groups have consistently low
APV. The HetCA-noMut group begins with high a pheno-
typic variance, but then decreases with time. This is likely
due to an initial period of conflict between the randomly
generated genomes, which later diminishes in intensity fol-
lowing the initial growth and extinction events. Thus, as we
expected, there is little long-term variance in any of these
three groups.

The two control groups closest in their σ curves over time
(Figure 4) are the HetCA-a7 and HetCA-noDecay groups
(blue and green). This is also reflected in Figure 6 by their
APV clearly greater than all the other groups. Further-
more, HetCA-a7 is significantly higher than HetCA-noDecay
(confirmed by a Welch’s two-sample t-test yielding a P-value
p < 0.01, even in the closer case of T = 400k time steps). On
the other hand, however, it seems that the APV of HetCA-
a7 is decreasing as the averaging window widens, while the
APV of HetCA-noDecay is increasing.

To explore this further, several very long runs of T = 1M
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Figure 7: Plot of σglob over time for five independent
long runs of HetCA-a7.

time steps were executed in both groups. In theory, given
that the world is discrete and its states are finite, there must
exist some point in time at which the dynamics of the world
should loop back and become cyclic. However, due to the
huge numbers of location-genome-state combinatorial possi-
bilities, even the very long runs were not enough to reveal
these types of cycles (Figure 7).

The phenotypic variance for the two groups is contrasted
more precisely over different durations in Figure 8. Here, it
is clear that the APV of HetCA-a7 initially decreases while
that of HetCA-noDecay increases. By duration 400k, how-
ever, both values have plateaued. By duration 1M, there is
no significant difference in phenotypic variance inside either
group, compared to duration 400k. Still, at duration 1M,
the phenotypic variance of HetCA-a7 is significantly greater
than that of HetCA-noDecay (with P-value p < 0.05, where
this slightly greater uncertainty is probably due to less data
points on these long runs).

5. CONCLUSIONS
We have presented a simple extension of cellular automata,

HetCA, consisting of three important changes from classi-
cal CA: transition function heterogeneity, transition func-
tion mutability, and cell decay and quiescence. Our hypoth-
esis was that these changes would generate long-term dy-
namics. To test this, we developed a measure of phenotypic
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diversity correlating with our intuition regarding significant
phenotypic events.

Results showed that our model HetCA was capable of long-

term phenotypic dynamics, sustaining a high level of vari-
ance over very long runs. Moreover, HetCA displayed greater

behavioral diversity than classical cellular automata, such as
the Game of Life. Finally, comparison between model vari-
ants showed that all three changes were instrumental in the
generation of this long-term diversity.

6. ACKNOWLEDGMENTS
We thank Nicolas Bredeche (ISIR, Université Pierre et
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